1
0
Fork 0
mirror of https://github.com/juce-framework/JUCE.git synced 2026-02-01 03:10:06 +00:00
JUCE/modules/juce_opengl/opengl/juce_OpenGLGraphicsContext.cpp

2279 lines
83 KiB
C++

/*
==============================================================================
This file is part of the JUCE library - "Jules' Utility Class Extensions"
Copyright 2004-11 by Raw Material Software Ltd.
------------------------------------------------------------------------------
JUCE can be redistributed and/or modified under the terms of the GNU General
Public License (Version 2), as published by the Free Software Foundation.
A copy of the license is included in the JUCE distribution, or can be found
online at www.gnu.org/licenses.
JUCE is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
------------------------------------------------------------------------------
To release a closed-source product which uses JUCE, commercial licenses are
available: visit www.rawmaterialsoftware.com/juce for more information.
==============================================================================
*/
BEGIN_JUCE_NAMESPACE
namespace
{
#if JUCE_WINDOWS
enum
{
GL_OPERAND0_RGB = 0x8590,
GL_OPERAND1_RGB = 0x8591,
GL_OPERAND0_ALPHA = 0x8598,
GL_OPERAND1_ALPHA = 0x8599,
GL_SRC0_RGB = 0x8580,
GL_SRC1_RGB = 0x8581,
GL_SRC0_ALPHA = 0x8588,
GL_SRC1_ALPHA = 0x8589,
GL_TEXTURE0 = 0x84C0,
GL_TEXTURE1 = 0x84C1,
GL_TEXTURE2 = 0x84C2,
GL_COMBINE = 0x8570,
GL_COMBINE_RGB = 0x8571,
GL_COMBINE_ALPHA = 0x8572,
GL_PREVIOUS = 0x8578,
};
#endif
#if JUCE_WINDOWS || JUCE_LINUX
JUCE_DECLARE_GL_EXTENSION_FUNCTION (glActiveTexture, void, (GLenum));
JUCE_DECLARE_GL_EXTENSION_FUNCTION (glClientActiveTexture, void, (GLenum));
void initialiseMultiTextureExtensions()
{
if (glActiveTexture == nullptr)
{
JUCE_INSTANTIATE_GL_EXTENSION (glActiveTexture);
JUCE_INSTANTIATE_GL_EXTENSION (glClientActiveTexture);
}
}
#else
void initialiseMultiTextureExtensions() {}
#endif
}
//==============================================================================
struct OpenGLTarget
{
OpenGLTarget (GLuint frameBufferID_, int width_, int height_) noexcept
: frameBuffer (nullptr), frameBufferID (frameBufferID_),
x (0), y (0), width (width_), height (height_)
{}
OpenGLTarget (OpenGLFrameBuffer& frameBuffer_, const Point<int>& origin) noexcept
: frameBuffer (&frameBuffer_), frameBufferID (0), x (origin.x), y (origin.y),
width (frameBuffer_.getWidth()), height (frameBuffer_.getHeight())
{}
OpenGLTarget (const OpenGLTarget& other) noexcept
: frameBuffer (other.frameBuffer), frameBufferID (other.frameBufferID),
x (other.x), y (other.y), width (other.width), height (other.height)
{}
void makeActiveFor2D() const
{
if (frameBuffer != nullptr)
frameBuffer->makeCurrentRenderingTarget();
else
OpenGLFrameBuffer::setCurrentFrameBufferTarget (frameBufferID);
applyFlippedMatrix (x, y, width, height);
glDisable (GL_DEPTH_TEST);
}
void scissor (Rectangle<int> r) const
{
r = r.translated (-x, -y);
OpenGLHelpers::enableScissorTest (r.withY (height - r.getBottom()));
}
static void applyFlippedMatrix (const int x, const int y, const int width, const int height)
{
glMatrixMode (GL_PROJECTION);
glLoadIdentity();
#if JUCE_OPENGL_ES
glOrthof ((GLfloat) x, (GLfloat) (x + width), (GLfloat) (y + height), (GLfloat) y, 0.0f, 1.0f);
#else
glOrtho (x, x + width, y + height, y, 0, 1);
#endif
glViewport (0, 0, width, height);
}
struct TargetSaver
{
TargetSaver()
: oldFramebuffer (OpenGLFrameBuffer::getCurrentFrameBufferTarget())
{
glGetIntegerv (GL_VIEWPORT, oldViewport);
glPushMatrix();
}
~TargetSaver()
{
OpenGLFrameBuffer::setCurrentFrameBufferTarget (oldFramebuffer);
glPopMatrix();
glViewport (oldViewport[0], oldViewport[1], oldViewport[2], oldViewport[3]);
}
private:
GLuint oldFramebuffer;
GLint oldViewport[4];
};
OpenGLFrameBuffer* frameBuffer;
GLuint frameBufferID;
int x, y, width, height;
};
//==============================================================================
class PositionedTexture
{
public:
PositionedTexture (OpenGLTexture& texture, EdgeTable& et, const Rectangle<int>& clip_)
{
et.clipToRectangle (clip_);
EdgeTableAlphaMap alphaMap (et);
texture.loadAlpha (alphaMap.data, alphaMap.area.getWidth(), alphaMap.area.getHeight());
textureID = texture.getTextureID();
clip = et.getMaximumBounds();
area = alphaMap.area;
}
PositionedTexture (GLuint textureID_, const Rectangle<int> area_, const Rectangle<int> clip_) noexcept
: textureID (textureID_), area (area_), clip (clip_)
{}
template <typename ValueType>
void getTextureCoordAt (ValueType x, ValueType y, GLfloat& resultX, GLfloat& resultY) const noexcept
{
resultX = (x - area.getX()) / (float) area.getWidth();
resultY = (area.getBottom() - y) / (float) area.getHeight();
}
void prepareTextureCoords (const Rectangle<int>* const area, GLfloat* const textureCoords) const noexcept
{
if (area != nullptr)
{
getTextureCoordAt (area->getX(), area->getY(), textureCoords[0], textureCoords[1]);
getTextureCoordAt (area->getRight(), area->getY(), textureCoords[2], textureCoords[3]);
getTextureCoordAt (area->getX(), area->getBottom(), textureCoords[4], textureCoords[5]);
getTextureCoordAt (area->getRight(), area->getBottom(), textureCoords[6], textureCoords[7]);
}
glTexCoordPointer (2, GL_FLOAT, 0, textureCoords);
}
GLuint textureID;
Rectangle<int> area, clip;
private:
struct EdgeTableAlphaMap
{
EdgeTableAlphaMap (const EdgeTable& et)
: area (et.getMaximumBounds().withSize (nextPowerOfTwo (et.getMaximumBounds().getWidth()),
nextPowerOfTwo (et.getMaximumBounds().getHeight())))
{
data.calloc (area.getWidth() * area.getHeight());
et.iterate (*this);
}
inline void setEdgeTableYPos (const int y) noexcept
{
currentLine = data + (area.getBottom() - 1 - y) * area.getWidth() - area.getX();
}
inline void handleEdgeTablePixel (const int x, const int alphaLevel) const noexcept
{
currentLine[x] = (uint8) alphaLevel;
}
inline void handleEdgeTablePixelFull (const int x) const noexcept
{
currentLine[x] = 255;
}
inline void handleEdgeTableLine (int x, int width, const int alphaLevel) const noexcept
{
memset (currentLine + x, (uint8) alphaLevel, width);
}
inline void handleEdgeTableLineFull (int x, int width) const noexcept
{
memset (currentLine + x, 255, width);
}
HeapBlock<uint8> data;
const Rectangle<int> area;
private:
uint8* currentLine;
JUCE_DECLARE_NON_COPYABLE (EdgeTableAlphaMap);
};
};
//==============================================================================
namespace
{
struct TemporaryColourModulationMode
{
TemporaryColourModulationMode() { glTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR); }
~TemporaryColourModulationMode() { glTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_ALPHA); }
};
}
//==============================================================================
#if JUCE_USE_OPENGL_SHADERS
class GLShaderProgram
{
public:
GLShaderProgram() noexcept
: program (glCreateProgram())
{
}
~GLShaderProgram() noexcept
{
glDeleteProgram (program);
}
void addShader (const GLchar* const code, GLenum type)
{
GLuint shaderID = glCreateShader (type);
glShaderSource (shaderID, 1, (const GLchar**) &code, nullptr);
glCompileShader (shaderID);
#if JUCE_DEBUG
GLint status = 0;
glGetShaderiv (shaderID, GL_COMPILE_STATUS, &status);
if (status == GL_FALSE)
{
GLchar infoLog [16384];
GLsizei infologLength = 0;
glGetShaderInfoLog (shaderID, sizeof (infoLog), &infologLength, infoLog);
DBG (String (infoLog, infologLength));
jassertfalse;
}
#endif
glAttachShader (program, shaderID);
glDeleteShader (shaderID);
}
void link() noexcept
{
glLinkProgram (program);
#if JUCE_DEBUG
GLint status = 0;
glGetProgramiv (program, GL_LINK_STATUS, &status);
jassert (status != GL_FALSE);
#endif
}
struct Uniform
{
Uniform (const GLShaderProgram& program, const GLchar* name)
: uniformID (glGetUniformLocation (program.program, name))
{
jassert (uniformID >= 0);
}
void set (GLfloat n1) const noexcept { glUniform1f (uniformID, n1); }
void set (GLint n1) const noexcept { glUniform1i (uniformID, n1); }
void set (GLfloat n1, GLfloat n2) const noexcept { glUniform2f (uniformID, n1, n2); }
void set (GLfloat n1, GLfloat n2, GLfloat n3) const noexcept { glUniform3f (uniformID, n1, n2, n3); }
void set (GLfloat n1, GLfloat n2, GLfloat n3, float n4) const noexcept { glUniform4f (uniformID, n1, n2, n3, n4); }
void set (GLint n1, GLint n2, GLint n3, GLint n4) const noexcept { glUniform4i (uniformID, n1, n2, n3, n4); }
void set (const AffineTransform& t) const noexcept
{
const GLfloat f[] = { t.mat00, t.mat01, t.mat02, t.mat10, t.mat11, t.mat12 };
glUniformMatrix2x3fv (uniformID, 1, false, f);
}
GLint uniformID;
};
GLuint program;
};
struct ShaderPrograms
{
ShaderPrograms()
{
String v ((const char*) glGetString (GL_SHADING_LANGUAGE_VERSION));
v = v.upToFirstOccurrenceOf (" ", false, false);
areShadersSupported = (v.getDoubleValue() >= 1.199);
}
bool areShadersSupported;
struct ShaderBase
{
ShaderBase (const char* fragmentShader)
{
addShader (fragmentShader, GL_FRAGMENT_SHADER);
link();
}
GLShaderProgram program;
};
struct SolidColourMaskedProgram : public ShaderBase
{
SolidColourMaskedProgram()
: ShaderBase ("#version 120\n"
"uniform sampler2D maskTexture;"
"uniform ivec4 maskBounds;"
"const float textureY = 0.5;"
""
"void main()"
"{"
" vec2 maskPos;"
" maskPos.x = (gl_FragCoord.x - maskBounds.x) / maskBounds.z;"
" maskPos.y = 1.0 - (gl_FragCoord.y - maskBounds.y) / maskBounds.w;"
" gl_FragColor = gl_Color * texture2D (maskTexture, maskPos).w;"
"}"),
maskTexture (program, "maskTexture"),
maskBounds (program, "maskBounds")
{
}
GLShaderProgram::Uniform maskTexture, maskBounds;
};
struct RadialGradientProgram : public ShaderBase
{
RadialGradientProgram()
: ShaderBase ("#version 120\n"
"uniform sampler2D gradientTexture;"
"uniform mat2x3 matrix;"
"const float textureY = 0.5;"
""
"void main()"
"{"
" float dist = length (vec2 (matrix[0][0] * gl_FragCoord.x + matrix[0][1] * gl_FragCoord.y + matrix[0][2],"
" matrix[1][0] * gl_FragCoord.x + matrix[1][1] * gl_FragCoord.y + matrix[1][2]));"
" gl_FragColor = gl_Color.w * texture2D (gradientTexture, vec2 (dist, textureY));"
"}"),
gradientTexture (program, "gradientTexture"),
matrix (program, "matrix")
{
}
GLShaderProgram::Uniform gradientTexture, matrix;
};
struct RadialGradientMaskedProgram : public ShaderBase
{
RadialGradientMaskedProgram()
: ShaderBase ("#version 120\n"
"uniform sampler2D gradientTexture;"
"uniform mat2x3 matrix;"
"uniform sampler2D maskTexture;"
"uniform ivec4 maskBounds;"
"const float textureY = 0.5;"
""
"void main()"
"{"
" float dist = length (vec2 (matrix[0][0] * gl_FragCoord.x + matrix[0][1] * gl_FragCoord.y + matrix[0][2],"
" matrix[1][0] * gl_FragCoord.x + matrix[1][1] * gl_FragCoord.y + matrix[1][2]));"
" vec4 result = gl_Color.w * texture2D (gradientTexture, vec2 (dist, textureY));"
""
" vec2 maskPos;"
" maskPos.x = (gl_FragCoord.x - maskBounds.x) / maskBounds.z;"
" maskPos.y = 1.0 - (gl_FragCoord.y - maskBounds.y) / maskBounds.w;"
" result *= texture2D (maskTexture, maskPos).w;"
""
" gl_FragColor = result;"
"}"),
gradientTexture (program, "gradientTexture"),
matrix (program, "matrix"),
maskTexture (program, "maskTexture"),
maskBounds (program, "maskBounds")
{
}
GLShaderProgram::Uniform gradientTexture, matrix;
GLShaderProgram::Uniform maskTexture, maskBounds;
};
struct LinearGradient1Program : public ShaderBase
{
LinearGradient1Program()
: ShaderBase ("#version 120\n"
"uniform sampler2D gradientTexture;"
"uniform vec4 gradientInfo;" // x = x1, y = y1, z = (y2 - y1) / (x2 - x1), w = length
"const float textureY = 0.5;"
""
"void main()"
"{"
" float dist = (gl_FragCoord.y - (gradientInfo.y + (gradientInfo.z * (gl_FragCoord.x - gradientInfo.x)))) / gradientInfo.w;"
" gl_FragColor = gl_Color.w * texture2D (gradientTexture, vec2 (dist, textureY));"
"}"),
gradientTexture (program, "gradientTexture"),
gradientInfo (program, "gradientInfo")
{
}
GLShaderProgram::Uniform gradientTexture, gradientInfo;
};
struct LinearGradient1MaskedProgram : public ShaderBase
{
LinearGradient1MaskedProgram()
: ShaderBase ("#version 120\n"
"uniform sampler2D gradientTexture;"
"uniform vec3 gradientInfo;" // x = (x2 - x1) / (y2 - y1), y = x1, z = length
"uniform sampler2D maskTexture;"
"uniform ivec4 maskBounds;"
"const float textureY = 0.5;"
""
"void main()"
"{"
" float dist = (gl_FragCoord.y - (gradientInfo.y + (gradientInfo.x * (gl_FragCoord.x - gradientInfo.y)))) / gradientInfo.z;"
" vec4 result = gl_Color.w * texture2D (gradientTexture, vec2 (dist, textureY));"
""
" vec2 maskPos;"
" maskPos.x = (gl_FragCoord.x - maskBounds.x) / maskBounds.z;"
" maskPos.y = 1.0 - (gl_FragCoord.y - maskBounds.y) / maskBounds.w;"
" result *= texture2D (maskTexture, maskPos).w;"
" gl_FragColor = result;"
"}"),
gradientTexture (program, "gradientTexture"),
gradientInfo (program, "gradientInfo"),
maskTexture (program, "maskTexture"),
maskBounds (program, "maskBounds")
{
}
GLShaderProgram::Uniform gradientTexture, gradientInfo;
GLShaderProgram::Uniform maskTexture, maskBounds;
};
struct LinearGradient2Program : public ShaderBase
{
LinearGradient2Program()
: ShaderBase ("#version 120\n"
"uniform sampler2D gradientTexture;"
"uniform vec4 gradientInfo;" // x = x1, y = y1, z = (x2 - x1) / (y2 - y1), y = y1, w = length
"const float textureY = 0.5;"
""
"void main()"
"{"
" float dist = (gl_FragCoord.x - (gradientInfo.x + (gradientInfo.z * (gl_FragCoord.y - gradientInfo.y)))) / gradientInfo.w;"
" gl_FragColor = gl_Color.w * texture2D (gradientTexture, vec2 (dist, textureY));"
"}"),
gradientTexture (program, "gradientTexture"),
gradientInfo (program, "gradientInfo")
{
}
GLShaderProgram::Uniform gradientTexture, gradientInfo;
};
struct LinearGradient2MaskedProgram : public ShaderBase
{
LinearGradient2MaskedProgram()
: ShaderBase ("#version 120\n"
"uniform sampler2D gradientTexture;"
"uniform vec3 gradientInfo;" // x = (y2 - y1) / (x2 - x1), y = y1, z = length
"uniform sampler2D maskTexture;"
"uniform ivec4 maskBounds;"
"const float textureY = 0.5;"
""
"void main()"
"{"
" float dist = (gl_FragCoord.x - (gradientInfo.y + (gradientInfo.x * (gl_FragCoord.y - gradientInfo.y)))) / gradientInfo.z;"
" vec4 result = gl_Color.w * texture2D (gradientTexture, vec2 (dist, textureY));"
""
" vec2 maskPos;"
" maskPos.x = (gl_FragCoord.x - maskBounds.x) / maskBounds.z;"
" maskPos.y = 1.0 - (gl_FragCoord.y - maskBounds.y) / maskBounds.w;"
" result *= texture2D (maskTexture, maskPos).w;"
" gl_FragColor = result;"
"}"),
gradientTexture (program, "gradientTexture"),
gradientInfo (program, "gradientInfo"),
maskTexture (program, "maskTexture"),
maskBounds (program, "maskBounds")
{
}
GLShaderProgram::Uniform gradientTexture, gradientInfo;
GLShaderProgram::Uniform maskTexture, maskBounds;
};
SolidColourMaskedProgram solidColourMasked;
RadialGradientProgram radialGradient;
RadialGradientMaskedProgram radialGradientMasked;
LinearGradient1Program linearGradient1;
LinearGradient1MaskedProgram linearGradient1Masked;
LinearGradient2Program linearGradient2;
LinearGradient2MaskedProgram linearGradient2Masked;
};
//static ScopedPointer<ShaderPrograms> programs;
#endif
class OpenGLRenderer::GLState
{
public:
GLState (const OpenGLTarget& target_) noexcept
: target (target_),
previousFrameBufferTarget (OpenGLFrameBuffer::getCurrentFrameBufferTarget()),
texturesEnabled (0),
currentActiveTexture (0),
blendingEnabled (false),
blendEnabled (false),
srcFunction (0), dstFunction (0),
currentColour (0),
quadQueueActive (false),
numVertices (0),
activeGradientIndex (0),
gradientNeedsRefresh (true)
#if JUCE_USE_OPENGL_SHADERS
, activeShader (nullptr)
#endif
{
// This object can only be created and used when the current thread has an active OpenGL context.
jassert (OpenGLHelpers::isContextActive());
initialiseMultiTextureExtensions();
target.makeActiveFor2D();
glDisableClientState (GL_COLOR_ARRAY);
glDisableClientState (GL_NORMAL_ARRAY);
glEnableClientState (GL_VERTEX_ARRAY);
glDisable (GL_BLEND);
glColor4f (0, 0, 0, 0);
for (int i = 3; --i >= 0;)
{
setActiveTexture (i);
glEnableClientState (GL_TEXTURE_COORD_ARRAY);
}
clearSelectedTextures();
resetMultiTextureModes (false);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
#if JUCE_USE_OPENGL_SHADERS
if (programs == nullptr)
programs = new ShaderPrograms();
canUseShaders = programs->areShadersSupported;
#endif
}
~GLState()
{
flushQuads();
OpenGLFrameBuffer::setCurrentFrameBufferTarget (previousFrameBufferTarget);
resetMultiTextureModes (true);
glFlush();
}
#if JUCE_USE_OPENGL_SHADERS
bool shadersAvailable() const
{
return canUseShaders;
}
#endif
void setPremultipliedColour (const Colour& c) noexcept
{
setColour (c.getPixelARGB());
}
void setColour (const float alpha) noexcept
{
const uint8 v = (uint8) jmin (255, (int) (alpha * 255.0f));
setColour (PixelARGB (v, v, v, v));
}
void setColour (const PixelARGB& c) noexcept
{
if (currentColour.getARGB() != c.getARGB())
{
currentColour = c;
glColor4f (c.getRed() / 255.0f, c.getGreen() / 255.0f,
c.getBlue() / 255.0f, c.getAlpha() / 255.0f);
}
}
void setSolidColour() noexcept
{
if (currentColour.getARGB() != 0xffffffff)
{
currentColour = PixelARGB (0xffffffff);
glColor4f (1.0f, 1.0f, 1.0f, 1.0f);
}
}
void setPremultipliedBlendingMode() noexcept
{
setBlendFunc (GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
}
void setBlendFunc (GLenum src, GLenum dst)
{
if (! blendingEnabled)
{
flushQuads();
blendingEnabled = true;
glEnable (GL_BLEND);
}
if (srcFunction != src || dstFunction != dst)
{
flushQuads();
srcFunction = src;
dstFunction = dst;
glBlendFunc (src, dst);
}
}
void disableBlend() noexcept
{
if (blendingEnabled)
{
flushQuads();
blendingEnabled = false;
glDisable (GL_BLEND);
}
}
void setBlendMode (const bool replaceExistingContents) noexcept
{
if (replaceExistingContents)
disableBlend();
else
setPremultipliedBlendingMode();
}
void scissor (const Rectangle<int>& r)
{
flushQuads();
target.scissor (r);
}
void disableScissor()
{
flushQuads();
glDisable (GL_SCISSOR_TEST);
}
OpenGLTexture* getTexture (int w, int h)
{
if (textures.size() < numTexturesToCache)
{
clearSelectedTextures();
return new OpenGLTexture();
}
for (int i = 0; i < numTexturesToCache - 2; ++i)
{
const OpenGLTexture* const t = textures.getUnchecked(i);
if (t->getWidth() == w && t->getHeight() == h)
return textures.removeAndReturn (i);
}
return textures.removeAndReturn (0);
}
void releaseTexture (OpenGLTexture* texture)
{
currentTextureID [currentActiveTexture] = 0;
textures.add (texture);
}
void resetGradient() noexcept
{
gradientNeedsRefresh = true;
}
void bindTexture (const GLuint textureID) noexcept
{
if (currentTextureID [currentActiveTexture] != textureID)
{
currentTextureID [currentActiveTexture] = textureID;
glBindTexture (GL_TEXTURE_2D, textureID);
}
else
{
GLint t = 0;
glGetIntegerv (GL_TEXTURE_BINDING_2D, &t);
jassert (t == (GLint) textureID);
}
}
void bindTextureForGradient (const ColourGradient& gradient)
{
if (gradientNeedsRefresh)
{
gradientNeedsRefresh = false;
if (gradientTextures.size() < numGradientTexturesToCache)
{
activeGradientIndex = gradientTextures.size();
clearSelectedTextures();
gradientTextures.add (new OpenGLTexture());
}
else
{
activeGradientIndex = (activeGradientIndex + 1) % numGradientTexturesToCache;
}
PixelARGB lookup [gradientTextureSize];
gradient.createLookupTable (lookup, gradientTextureSize);
gradientTextures.getUnchecked (activeGradientIndex)->loadARGB (lookup, gradientTextureSize, 1);
}
bindTexture (gradientTextures.getUnchecked (activeGradientIndex)->getTextureID());
}
void setTexturesEnabled (const int textureIndexMask) noexcept
{
if (texturesEnabled != textureIndexMask)
{
flushQuads();
for (int i = 3; --i >= 0;)
{
if ((texturesEnabled & (1 << i)) != (textureIndexMask & (1 << i)))
{
setActiveTexture (i);
if ((textureIndexMask & (1 << i)) != 0)
glEnable (GL_TEXTURE_2D);
else
glDisable (GL_TEXTURE_2D);
}
}
texturesEnabled = textureIndexMask;
}
}
void setActiveTexture (const int index) noexcept
{
if (currentActiveTexture != index)
{
currentActiveTexture = index;
glActiveTexture (GL_TEXTURE0 + index);
glClientActiveTexture (GL_TEXTURE0 + index);
}
}
void setSingleTextureMode() noexcept
{
setTexturesEnabled (1);
setActiveTexture (0);
}
void prepareMasks (const PositionedTexture* const mask1, const PositionedTexture* const mask2,
GLfloat* const textureCoords1, GLfloat* const textureCoords2, const Rectangle<int>* const area)
{
if (mask1 != nullptr)
{
setTexturesEnabled (mask2 != nullptr ? 7 : 3);
setActiveTexture (0);
mask1->prepareTextureCoords (area, textureCoords1);
bindTexture (mask1->textureID);
setActiveTexture (1);
if (mask2 != nullptr)
{
mask2->prepareTextureCoords (area, textureCoords2);
bindTexture (mask2->textureID);
setActiveTexture (2);
}
}
else
{
setSingleTextureMode();
}
}
void checkQuadQueueActive()
{
if (! quadQueueActive)
{
jassert (numVertices == 0);
setTexturesEnabled (0);
glEnableClientState (GL_COLOR_ARRAY);
glVertexPointer (2, GL_SHORT, 0, vertices);
glColorPointer (4, GL_UNSIGNED_BYTE, 0, colours);
setSolidColour();
quadQueueActive = true; // (careful to do this last, as the preceding calls may change it)
}
}
void addQuadToList (const int x, const int y, const int w, const int h, const PixelARGB& colour) noexcept
{
jassert (quadQueueActive && w > 0 && h > 0);
const GLshort x1 = (GLshort) x;
const GLshort y1 = (GLshort) y;
const GLshort x2 = (GLshort) (x + w);
const GLshort y2 = (GLshort) (y + h);
GLshort* const v = vertices + numVertices * 2;
v[0] = x1; v[1] = y1; v[2] = x2; v[3] = y1; v[4] = x1; v[5] = y2;
v[6] = x2; v[7] = y1; v[8] = x1; v[9] = y2; v[10] = x2; v[11] = y2;
const uint32 rgba = colour.getInRGBAMemoryOrder();
uint32* const c = colours + numVertices;
for (int i = 0; i < 6; ++i)
c[i] = rgba;
numVertices += 6;
if (numVertices > maxVerticesPerBlock - 6)
{
glDrawArrays (GL_TRIANGLES, 0, numVertices);
numVertices = 0;
}
}
void fillRect (const Rectangle<float>& r, const PixelARGB& colour) noexcept
{
jassert (! r.isEmpty());
FloatRectangleRenderer frr (*this, colour);
RenderingHelpers::FloatRectangleRasterisingInfo (r).iterate (frr);
}
void fillRectangleList (const RectangleList& list, const PixelARGB& colour)
{
checkQuadQueueActive();
for (RectangleList::Iterator i (list); i.next();)
addQuadToList (i.getRectangle()->getX(), i.getRectangle()->getY(),
i.getRectangle()->getWidth(), i.getRectangle()->getHeight(), colour);
}
void fillRectangleList (const RectangleList& list, const Rectangle<int>& clip, const PixelARGB& colour)
{
checkQuadQueueActive();
for (RectangleList::Iterator i (list); i.next();)
{
const Rectangle<int> r (i.getRectangle()->getIntersection (clip));
if (! r.isEmpty())
addQuadToList (r.getX(), r.getY(), r.getWidth(), r.getHeight(), colour);
}
}
void drawTriangleStrip (const GLfloat* const vertices, const GLfloat* const textureCoords, const int numVertices) noexcept
{
glVertexPointer (2, GL_FLOAT, 0, vertices);
glTexCoordPointer (2, GL_FLOAT, 0, textureCoords);
glDrawArrays (GL_TRIANGLE_STRIP, 0, numVertices);
}
void fillEdgeTable (const EdgeTable& et, const PixelARGB& colour)
{
EdgeTableRenderer etr (*this, colour);
et.iterate (etr);
}
void renderImage (const OpenGLTextureFromImage& image,
const Rectangle<int>& clip, const AffineTransform& transform, float alpha,
const PositionedTexture* mask1, const PositionedTexture* mask2,
const bool replaceExistingContents, const bool isTiled)
{
flushQuads();
setBlendMode (replaceExistingContents);
setColour (alpha);
GLfloat textureCoords1[8], textureCoords2[8];
if ((! isTiled) || (isPowerOfTwo (image.imageWidth) && isPowerOfTwo (image.imageHeight)))
{
prepareMasks (mask1, mask2, textureCoords1, textureCoords2, &clip);
bindTexture (image.textureID);
TemporaryColourModulationMode tmm;
if (isTiled)
{
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
}
const GLfloat clipX = (GLfloat) clip.getX();
const GLfloat clipY = (GLfloat) clip.getY();
const GLfloat clipR = (GLfloat) clip.getRight();
const GLfloat clipB = (GLfloat) clip.getBottom();
const GLfloat vertices[] = { clipX, clipY, clipR, clipY, clipX, clipB, clipR, clipB };
GLfloat textureCoords[] = { clipX, clipY, clipR, clipY, clipX, clipB, clipR, clipB };
{
const AffineTransform t (transform.inverted().scaled (image.fullWidthProportion / image.imageWidth,
image.fullHeightProportion / image.imageHeight));
t.transformPoints (textureCoords[0], textureCoords[1], textureCoords[2], textureCoords[3]);
t.transformPoints (textureCoords[4], textureCoords[5], textureCoords[6], textureCoords[7]);
textureCoords[1] = 1.0f - textureCoords[1];
textureCoords[3] = 1.0f - textureCoords[3];
textureCoords[5] = 1.0f - textureCoords[5];
textureCoords[7] = 1.0f - textureCoords[7];
}
glVertexPointer (2, GL_FLOAT, 0, vertices);
glTexCoordPointer (2, GL_FLOAT, 0, textureCoords);
glDrawArrays (GL_TRIANGLE_STRIP, 0, 4);
if (isTiled)
{
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
}
else
{
prepareMasks (mask1, mask2, textureCoords1, textureCoords2, nullptr);
bindTexture (image.textureID);
TemporaryColourModulationMode tmm;
scissor (clip);
glPushMatrix();
OpenGLHelpers::applyTransform (transform);
GLfloat vertices[8];
const GLfloat textureCoords[] = { 0, 1.0f, image.fullWidthProportion, 1.0f,
0, 1.0f - image.fullHeightProportion, image.fullWidthProportion, 1.0f - image.fullHeightProportion };
glVertexPointer (2, GL_FLOAT, 0, vertices);
glTexCoordPointer (2, GL_FLOAT, 0, textureCoords);
const Rectangle<int> targetArea (clip.toFloat().transformed (transform.inverted()).getSmallestIntegerContainer());
int x = targetArea.getX() - negativeAwareModulo (targetArea.getX(), image.imageWidth);
int y = targetArea.getY() - negativeAwareModulo (targetArea.getY(), image.imageHeight);
const int right = targetArea.getRight();
const int bottom = targetArea.getBottom();
while (y < bottom)
{
vertices[1] = vertices[3] = (GLfloat) y;
vertices[5] = vertices[7] = (GLfloat) (y + image.imageHeight);
for (int x1 = x; x1 < right; x1 += image.imageWidth)
{
vertices[0] = vertices[4] = (GLfloat) x1;
vertices[2] = vertices[6] = (GLfloat) (x1 + image.imageWidth);
if (mask1 != nullptr)
{
float t[] = { vertices[0], vertices[1], vertices[2], vertices[3],
vertices[4], vertices[5], vertices[6], vertices[7] };
transform.transformPoints (t[0], t[1], t[2], t[3]);
transform.transformPoints (t[4], t[5], t[6], t[7]);
mask1->getTextureCoordAt (t[0], t[1], textureCoords1[0], textureCoords1[1]);
mask1->getTextureCoordAt (t[2], t[3], textureCoords1[2], textureCoords1[3]);
mask1->getTextureCoordAt (t[4], t[5], textureCoords1[4], textureCoords1[5]);
mask1->getTextureCoordAt (t[6], t[7], textureCoords1[6], textureCoords1[7]);
if (mask2 != nullptr)
{
mask2->getTextureCoordAt (t[0], t[1], textureCoords2[0], textureCoords2[1]);
mask2->getTextureCoordAt (t[2], t[3], textureCoords2[2], textureCoords2[3]);
mask2->getTextureCoordAt (t[4], t[5], textureCoords2[4], textureCoords2[5]);
mask2->getTextureCoordAt (t[6], t[7], textureCoords2[6], textureCoords2[7]);
}
}
glDrawArrays (GL_TRIANGLE_STRIP, 0, 4);
}
y += image.imageHeight;
}
glPopMatrix();
disableScissor();
}
}
void fillTexture (const Rectangle<int>& area, const FillType& fill,
const PositionedTexture* mask1, const PositionedTexture* mask2,
const bool replaceExistingContents)
{
jassert (! (mask1 == nullptr && mask2 != nullptr));
if (fill.isColour())
{
GLfloat textureCoords1[8], textureCoords2[8];
if (mask1 != nullptr)
{
setBlendMode (replaceExistingContents);
setTexturesEnabled (mask2 != nullptr ? 3 : 1);
setActiveTexture (0);
mask1->prepareTextureCoords (&area, textureCoords1);
bindTexture (mask1->textureID);
if (mask2 != nullptr)
{
setActiveTexture (1);
mask2->prepareTextureCoords (&area, textureCoords2);
bindTexture (mask2->textureID);
}
}
else
{
setBlendMode (replaceExistingContents || fill.colour.isOpaque());
setTexturesEnabled (0);
}
setPremultipliedColour (fill.colour);
OpenGLHelpers::fillRect (area);
}
else if (fill.isGradient())
{
ColourGradient g2 (*(fill.gradient));
g2.multiplyOpacity (fill.getOpacity());
if (g2.point1 == g2.point2)
{
fillTexture (area, g2.getColourAtPosition (1.0), mask1, mask2, replaceExistingContents);
}
else
{
setBlendMode (replaceExistingContents || (mask1 == nullptr && fill.colour.isOpaque() && fill.gradient->isOpaque()));
if (g2.isRadial)
fillWithRadialGradient (area, g2, fill.transform, mask1, mask2);
else
fillWithLinearGradient (area, g2, fill.transform, mask1, mask2);
}
}
else if (fill.isTiledImage())
{
renderImage (fill.image, area, fill.transform, fill.colour.getFloatAlpha(),
mask1, mask2, replaceExistingContents, true);
}
}
#if JUCE_USE_OPENGL_SHADERS
void setShaderForGradientFill (const FillType& fill)
{
setPremultipliedBlendingMode();
setSingleTextureMode();
setSolidColour();
const ColourGradient& g = *fill.gradient;
bindTextureForGradient (g);
const AffineTransform t (fill.transform.followedBy (AffineTransform::verticalFlip (target.height)));
Point<float> p1 (g.point1.transformedBy (t));
const Point<float> p2 (g.point2.transformedBy (t));
const Point<float> p3 (Point<float> (g.point1.x + (g.point2.y - g.point1.y),
g.point1.y - (g.point2.x - g.point1.x)).transformedBy (t));
if (g.isRadial)
{
setShader (&(programs->radialGradient.program));
programs->radialGradient.matrix.set (AffineTransform::fromTargetPoints (p1.x, p1.y, 0.0f, 0.0f,
p2.x, p2.y, 1.0f, 0.0f,
p3.x, p3.y, 0.0f, 1.0f));
}
else
{
p1 = Line<float> (p1, p3).findNearestPointTo (p2);
const Point<float> delta (p2.x - p1.x, p1.y - p2.y);
if (std::abs (delta.x) < std::abs (delta.y))
{
setShader (&(programs->linearGradient1.program));
const float grad = delta.x / delta.y;
programs->linearGradient1.gradientInfo.set (p1.x, p1.y, grad, (p2.y - grad * p2.x) - (p1.y - grad * p1.x));
}
else
{
setShader (&(programs->linearGradient2.program));
const float grad = delta.y / delta.x;
programs->linearGradient2.gradientInfo.set (p1.x, p1.y, grad, (p2.x - grad * p2.y) - (p1.x - grad * p1.y));
}
}
}
#endif
void flushQuads() noexcept
{
if (quadQueueActive)
{
if (numVertices > 0)
{
glDrawArrays (GL_TRIANGLES, 0, numVertices);
numVertices = 0;
}
quadQueueActive = false;
glDisableClientState (GL_COLOR_ARRAY);
}
}
void clearSelectedTextures() noexcept
{
for (int i = 0; i < numElementsInArray (currentTextureID); ++i)
currentTextureID[i] = 0;
}
#if JUCE_USE_OPENGL_SHADERS
void setShader (GLShaderProgram* newShader)
{
if (activeShader != newShader)
{
flushQuads();
activeShader = newShader;
glUseProgram (newShader != nullptr ? newShader->program : 0);
}
}
#endif
OpenGLTarget target;
private:
enum
{
maxVerticesPerBlock = 192,
gradientTextureSize = 256,
numTexturesToCache = 8,
numGradientTexturesToCache = 6
};
GLuint previousFrameBufferTarget;
GLuint currentTextureID [3];
int texturesEnabled, currentActiveTexture;
bool blendingEnabled, blendEnabled;
GLenum srcFunction, dstFunction;
PixelARGB currentColour;
bool quadQueueActive;
GLshort vertices [maxVerticesPerBlock * 2];
uint32 colours [maxVerticesPerBlock];
int numVertices;
OwnedArray<OpenGLTexture> textures, gradientTextures;
int activeGradientIndex;
bool gradientNeedsRefresh;
#if JUCE_USE_OPENGL_SHADERS
GLShaderProgram* activeShader;
bool canUseShaders;
#endif
void resetMultiTextureMode (int index, const bool forRGBTextures)
{
setActiveTexture (index);
glDisable (GL_TEXTURE_2D);
glTexEnvi (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi (GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE);
glTexEnvi (GL_TEXTURE_ENV, GL_SRC0_RGB, GL_PREVIOUS);
glTexEnvi (GL_TEXTURE_ENV, GL_SRC1_RGB, GL_TEXTURE);
glTexEnvi (GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);
glTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_RGB, forRGBTextures ? GL_SRC_COLOR : GL_SRC_ALPHA);
glTexEnvi (GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_MODULATE);
glTexEnvi (GL_TEXTURE_ENV, GL_SRC0_ALPHA, GL_PREVIOUS);
glTexEnvi (GL_TEXTURE_ENV, GL_SRC1_ALPHA, GL_TEXTURE);
glTexEnvi (GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA);
glTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA, GL_SRC_ALPHA);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
}
void resetMultiTextureModes (const bool forRGBTextures)
{
resetMultiTextureMode (2, forRGBTextures);
resetMultiTextureMode (1, forRGBTextures);
resetMultiTextureMode (0, forRGBTextures);
}
struct EdgeTableRenderer
{
EdgeTableRenderer (GLState& state_, const PixelARGB& colour_) noexcept
: state (state_), colour (colour_)
{
state.checkQuadQueueActive();
}
void setEdgeTableYPos (const int y) noexcept
{
currentY = y;
}
void handleEdgeTablePixel (const int x, const int alphaLevel) noexcept
{
PixelARGB c (colour);
c.multiplyAlpha (alphaLevel);
state.addQuadToList (x, currentY, 1, 1, c);
}
void handleEdgeTablePixelFull (const int x) noexcept
{
state.addQuadToList (x, currentY, 1, 1, colour);
}
void handleEdgeTableLine (const int x, const int width, const int alphaLevel) noexcept
{
PixelARGB c (colour);
c.multiplyAlpha (alphaLevel);
state.addQuadToList (x, currentY, width, 1, c);
}
void handleEdgeTableLineFull (const int x, const int width) noexcept
{
state.addQuadToList (x, currentY, width, 1, colour);
}
private:
GLState& state;
const PixelARGB colour;
int currentY;
JUCE_DECLARE_NON_COPYABLE (EdgeTableRenderer);
};
struct FloatRectangleRenderer
{
FloatRectangleRenderer (GLState& state_, const PixelARGB& colour_) noexcept
: state (state_), colour (colour_)
{
state.checkQuadQueueActive();
}
void operator() (const int x, const int y, const int w, const int h, const int alpha) noexcept
{
if (w > 0 && h > 0)
{
PixelARGB c (colour);
c.multiplyAlpha (alpha);
state.addQuadToList (x, y, w, h, c);
}
}
private:
GLState& state;
const PixelARGB colour;
JUCE_DECLARE_NON_COPYABLE (FloatRectangleRenderer);
};
void fillWithLinearGradient (const Rectangle<int>& rect, const ColourGradient& grad, const AffineTransform& transform,
const PositionedTexture* mask1, const PositionedTexture* mask2)
{
const Point<float> p1 (grad.point1.transformedBy (transform));
const Point<float> p2 (grad.point2.transformedBy (transform));
const Point<float> p3 (Point<float> (grad.point1.x - (grad.point2.y - grad.point1.y) / gradientTextureSize,
grad.point1.y + (grad.point2.x - grad.point1.x) / gradientTextureSize).transformedBy (transform));
const AffineTransform textureTransform (AffineTransform::fromTargetPoints (p1.x, p1.y, 0.0f, 0.0f,
p2.x, p2.y, 1.0f, 0.0f,
p3.x, p3.y, 0.0f, 1.0f));
const GLfloat l = (GLfloat) rect.getX();
const GLfloat r = (GLfloat) rect.getRight();
const GLfloat t = (GLfloat) rect.getY();
const GLfloat b = (GLfloat) rect.getBottom();
const GLfloat vertices[] = { l, t, r, t, l, b, r, b };
GLfloat textureCoords[] = { l, t, r, t, l, b, r, b };
textureTransform.transformPoints (textureCoords[0], textureCoords[1], textureCoords[2], textureCoords[3]);
textureTransform.transformPoints (textureCoords[4], textureCoords[5], textureCoords[6], textureCoords[7]);
GLfloat textureCoords1[8], textureCoords2[8];
prepareMasks (mask1, mask2, textureCoords1, textureCoords2, &rect);
TemporaryColourModulationMode tmm;
bindTextureForGradient (grad);
setSolidColour();
drawTriangleStrip (vertices, textureCoords, 4);
}
void fillWithRadialGradient (const Rectangle<int>& rect, const ColourGradient& grad, const AffineTransform& transform,
const PositionedTexture* mask1, const PositionedTexture* mask2)
{
const Point<float> centre (grad.point1.transformedBy (transform));
const float screenRadius = centre.getDistanceFrom (rect.getCentre().toFloat())
+ Point<int> (rect.getWidth() / 2,
rect.getHeight() / 2).getDistanceFromOrigin()
+ 8.0f;
const AffineTransform inverse (transform.inverted());
const float sourceRadius = jmax (Point<float> (screenRadius, 0.0f).transformedBy (inverse).getDistanceFromOrigin(),
Point<float> (0.0f, screenRadius).transformedBy (inverse).getDistanceFromOrigin());
const int numDivisions = 90;
GLfloat vertices [4 + numDivisions * 2];
GLfloat textureCoords1 [4 + numDivisions * 2];
GLfloat textureCoords2 [4 + numDivisions * 2];
GLfloat textureCoords3 [4 + numDivisions * 2];
{
GLfloat* t = textureCoords1;
*t++ = 0.0f;
*t++ = 0.0f;
const GLfloat texturePos = sourceRadius / grad.point1.getDistanceFrom (grad.point2);
for (int i = numDivisions + 1; --i >= 0;)
{
*t++ = texturePos;
*t++ = 0.0f;
}
}
{
GLfloat* v = vertices;
*v++ = centre.x;
*v++ = centre.y;
const Point<float> first (grad.point1.translated (0, -sourceRadius)
.transformedBy (transform));
*v++ = first.x;
*v++ = first.y;
for (int i = 1; i < numDivisions; ++i)
{
const float angle = i * (float_Pi * 2.0f / numDivisions);
const Point<float> p (grad.point1.translated (std::sin (angle) * sourceRadius,
std::cos (angle) * -sourceRadius)
.transformedBy (transform));
*v++ = p.x;
*v++ = p.y;
}
*v++ = first.x;
*v++ = first.y;
}
prepareMasks (mask1, mask2, textureCoords2, textureCoords3, nullptr);
if (mask1 != nullptr)
{
for (int i = 0; i < 2 * (numDivisions + 2); i += 2)
mask1->getTextureCoordAt (vertices[i], vertices[i + 1], textureCoords2[i], textureCoords2[i + 1]);
if (mask2 != nullptr)
for (int i = 0; i < 2 * (numDivisions + 2); i += 2)
mask2->getTextureCoordAt (vertices[i], vertices[i + 1], textureCoords3[i], textureCoords3[i + 1]);
}
scissor (rect);
bindTextureForGradient (grad);
setSolidColour();
TemporaryColourModulationMode tmm;
glVertexPointer (2, GL_FLOAT, 0, vertices);
glTexCoordPointer (2, GL_FLOAT, 0, textureCoords1);
glDrawArrays (GL_TRIANGLE_FAN, 0, numDivisions + 2);
disableScissor();
}
};
//==============================================================================
class ClipRegion_Mask;
//==============================================================================
class ClipRegionBase : public SingleThreadedReferenceCountedObject
{
public:
ClipRegionBase (OpenGLRenderer::GLState& state_) noexcept : state (state_) {}
virtual ~ClipRegionBase() {}
typedef ReferenceCountedObjectPtr<ClipRegionBase> Ptr;
virtual Ptr clone() const = 0;
virtual Ptr applyClipTo (const Ptr& target) = 0;
virtual Ptr clipToRectangle (const Rectangle<int>&) = 0;
virtual Ptr clipToRectangleList (const RectangleList&) = 0;
virtual Ptr excludeClipRectangle (const Rectangle<int>&) = 0;
virtual Ptr clipToPath (const Path& p, const AffineTransform&) = 0;
virtual Ptr clipToImageAlpha (const OpenGLTextureFromImage&, const AffineTransform&) = 0;
virtual Ptr clipToTexture (const PositionedTexture&) = 0;
virtual Rectangle<int> getClipBounds() const = 0;
virtual void fillRect (const Rectangle<int>& area, const FillType&, bool replaceContents) = 0;
virtual void fillRect (const Rectangle<float>& area, const FillType&) = 0;
virtual void fillEdgeTable (EdgeTable& et, const FillType& fill) = 0;
virtual void drawImage (const OpenGLTextureFromImage&, const AffineTransform&, float alpha,
const Rectangle<int>& clip, const PositionedTexture* mask) = 0;
OpenGLRenderer::GLState& state;
private:
JUCE_DECLARE_NON_COPYABLE (ClipRegionBase);
};
//==============================================================================
class ClipRegion_Mask : public ClipRegionBase
{
public:
ClipRegion_Mask (const ClipRegion_Mask& other)
: ClipRegionBase (other.state),
clip (other.clip),
maskOrigin (other.clip.getPosition())
{
OpenGLTarget::TargetSaver ts;
state.flushQuads();
state.setSingleTextureMode();
state.clearSelectedTextures();
mask.initialise (clip.getWidth(), clip.getHeight());
OpenGLTarget m (mask, maskOrigin);
m.makeActiveFor2D();
state.disableBlend();
state.setSolidColour();
state.setSingleTextureMode();
OpenGLHelpers::drawTextureQuad (other.mask.getTextureID(), other.getMaskArea());
}
explicit ClipRegion_Mask (OpenGLRenderer::GLState& state_, const RectangleList& r)
: ClipRegionBase (state_),
clip (r.getBounds()),
maskOrigin (clip.getPosition())
{
OpenGLTarget::TargetSaver ts;
initialiseClear();
state.disableBlend();
state.fillRectangleList (r, PixelARGB (0xffffffff));
state.flushQuads();
}
Ptr clone() const { return new ClipRegion_Mask (*this); }
Rectangle<int> getClipBounds() const { return clip; }
Ptr applyClipTo (const Ptr& target)
{
return target->clipToTexture (PositionedTexture (mask.getTextureID(), getMaskArea(), clip));
}
Ptr clipToRectangle (const Rectangle<int>& r)
{
clip = clip.getIntersection (r);
return clip.isEmpty() ? nullptr : this;
}
Ptr clipToRectangleList (const RectangleList& r)
{
clip = clip.getIntersection (r.getBounds());
if (clip.isEmpty())
return nullptr;
RectangleList excluded (clip);
if (excluded.subtract (r))
{
if (excluded.getNumRectangles() == 1)
return excludeClipRectangle (excluded.getRectangle (0));
OpenGLTarget::TargetSaver ts;
makeMaskActive();
state.disableBlend();
state.fillRectangleList (excluded, PixelARGB (0));
state.flushQuads();
}
return this;
}
Ptr excludeClipRectangle (const Rectangle<int>& r)
{
if (r.contains (clip))
return nullptr;
OpenGLTarget::TargetSaver ts;
makeMaskActive();
state.setTexturesEnabled (0);
state.disableBlend();
state.setColour (PixelARGB (0));
OpenGLHelpers::fillRect (r);
return this;
}
Ptr clipToPath (const Path& p, const AffineTransform& t)
{
EdgeTable et (clip, p, t);
if (! et.isEmpty())
{
OpenGLTexture texture;
PositionedTexture pt (texture, et, et.getMaximumBounds());
return clipToTexture (pt);
}
return nullptr;
}
Ptr clipToTexture (const PositionedTexture& pt)
{
clip = clip.getIntersection (pt.clip);
if (clip.isEmpty())
return nullptr;
OpenGLTarget::TargetSaver ts;
makeMaskActive();
state.setBlendFunc (GL_ZERO, GL_SRC_ALPHA);
state.setSolidColour();
state.setSingleTextureMode();
OpenGLHelpers::drawTextureQuad (pt.textureID, pt.area);
return this;
}
Ptr clipToImageAlpha (const OpenGLTextureFromImage& image, const AffineTransform& transform)
{
OpenGLTarget::TargetSaver ts;
makeMaskActive();
state.setBlendFunc (GL_ZERO, GL_SRC_ALPHA);
state.setSolidColour();
state.setSingleTextureMode();
state.bindTexture (image.textureID);
const GLfloat l = (GLfloat) maskOrigin.x;
const GLfloat t = (GLfloat) maskOrigin.y;
const GLfloat r = (GLfloat) (maskOrigin.x + mask.getWidth());
const GLfloat b = (GLfloat) (maskOrigin.y + mask.getHeight());
const GLfloat vertices[] = { l, t, r, t, l, b, r, b };
GLfloat textureCoords[] = { l, t, r, t, l, b, r, b };
const AffineTransform inv (transform.inverted().scaled (image.fullWidthProportion / image.imageWidth,
image.fullHeightProportion / image.imageHeight));
inv.transformPoints (textureCoords[0], textureCoords[1], textureCoords[2], textureCoords[3]);
inv.transformPoints (textureCoords[4], textureCoords[5], textureCoords[6], textureCoords[7]);
textureCoords[1] = 1.0f - textureCoords[1];
textureCoords[3] = 1.0f - textureCoords[3];
textureCoords[5] = 1.0f - textureCoords[5];
textureCoords[7] = 1.0f - textureCoords[7];
state.drawTriangleStrip (vertices, textureCoords, 4);
return this;
}
void fillRect (const Rectangle<int>& area, const FillType& fill, bool replaceContents)
{
jassert (! replaceContents);
const Rectangle<int> r (clip.getIntersection (area));
if (! r.isEmpty())
fillRectInternal (r, fill, false);
}
void fillRect (const Rectangle<float>& area, const FillType& fill)
{
if (fill.isColour())
{
FloatRectangleRenderer frr (*this, fill);
RenderingHelpers::FloatRectangleRasterisingInfo (area).iterate (frr);
}
else
{
EdgeTable et (area);
fillEdgeTable (et, fill);
}
}
void fillEdgeTable (EdgeTable& et, const FillType& fill)
{
const Rectangle<int> r (et.getMaximumBounds().getIntersection (clip));
if (! r.isEmpty())
{
OpenGLTexture* texture = state.getTexture (r.getWidth(), r.getHeight());
PositionedTexture pt1 (*texture, et, r);
PositionedTexture pt2 (mask.getTextureID(), getMaskArea(), r);
state.fillTexture (r, fill, &pt2, &pt1, false);
state.releaseTexture (texture);
}
}
void fillRectInternal (const Rectangle<int>& area, const FillType& fill, bool replaceContents)
{
PositionedTexture pt (mask.getTextureID(), getMaskArea(), area);
state.fillTexture (area, fill, &pt, nullptr, replaceContents);
}
void drawImage (const OpenGLTextureFromImage& source, const AffineTransform& transform,
float alpha, const Rectangle<int>& clipArea, const PositionedTexture* mask1)
{
const Rectangle<int> bufferArea (clipArea.getIntersection (clip));
if (! bufferArea.isEmpty())
{
PositionedTexture pt (mask.getTextureID(), getMaskArea(), bufferArea);
state.renderImage (source, bufferArea, transform, alpha, &pt, mask1, false, false);
}
}
private:
OpenGLFrameBuffer mask;
Rectangle<int> clip;
Point<int> maskOrigin;
Rectangle<int> getMaskArea() const noexcept { return Rectangle<int> (maskOrigin.x, maskOrigin.y, mask.getWidth(), mask.getHeight()); }
void prepareFor2D() const { OpenGLTarget::applyFlippedMatrix (maskOrigin.x, maskOrigin.y, mask.getWidth(), mask.getHeight()); }
void makeMaskActive()
{
state.flushQuads();
const bool b = mask.makeCurrentRenderingTarget();
(void) b; jassert (b);
prepareFor2D();
}
void initialiseClear()
{
state.flushQuads();
jassert (! clip.isEmpty());
state.setSingleTextureMode();
state.clearSelectedTextures();
mask.initialise (clip.getWidth(), clip.getHeight());
mask.makeCurrentAndClear();
state.setTexturesEnabled (0);
state.disableBlend();
prepareFor2D();
}
struct FloatRectangleRenderer
{
FloatRectangleRenderer (ClipRegion_Mask& mask_, const FillType& fill_) noexcept
: mask (mask_), fill (fill_), originalColour (fill_.colour)
{}
void operator() (const int x, const int y, const int w, const int h, const int alpha) noexcept
{
if (w > 0 && h > 0)
{
fill.colour = originalColour.withMultipliedAlpha (alpha / 255.0f);
mask.fillRect (Rectangle<int> (x, y, w, h), fill, false);
}
}
private:
ClipRegion_Mask& mask;
FillType fill;
const Colour originalColour;
JUCE_DECLARE_NON_COPYABLE (FloatRectangleRenderer);
};
ClipRegion_Mask& operator= (const ClipRegion_Mask&);
};
//==============================================================================
class ClipRegion_RectangleList : public ClipRegionBase
{
public:
explicit ClipRegion_RectangleList (OpenGLRenderer::GLState& state_, const Rectangle<int>& r) noexcept
: ClipRegionBase (state_), clip (r)
{}
explicit ClipRegion_RectangleList (OpenGLRenderer::GLState& state_, const RectangleList& r) noexcept
: ClipRegionBase (state_), clip (r)
{}
Ptr clone() const { return new ClipRegion_RectangleList (state, clip); }
Rectangle<int> getClipBounds() const { return clip.getBounds(); }
Ptr applyClipTo (const Ptr& target) { return target->clipToRectangleList (clip); }
Ptr clipToRectangle (const Rectangle<int>& r) { return clip.clipTo (r) ? this : nullptr; }
Ptr clipToRectangleList (const RectangleList& r) { return clip.clipTo (r) ? this : nullptr; }
Ptr excludeClipRectangle (const Rectangle<int>& r) { clip.subtract (r); return clip.isEmpty() ? nullptr : this; }
Ptr clipToTexture (const PositionedTexture& t) { return toMask()->clipToTexture (t); }
Ptr clipToPath (const Path& p, const AffineTransform& transform) { return toMask()->clipToPath (p, transform); }
Ptr clipToImageAlpha (const OpenGLTextureFromImage& image, const AffineTransform& transform) { return toMask()->clipToImageAlpha (image, transform); }
void fillRect (const Rectangle<int>& area, const FillType& fill, bool replaceContents)
{
if (fill.isColour())
{
state.setTexturesEnabled (0);
state.setBlendMode (replaceContents || fill.colour.isOpaque());
state.fillRectangleList (clip, area, fill.colour.getPixelARGB());
}
#if JUCE_USE_OPENGL_SHADERS
else if (state.shadersAvailable() && fill.isGradient())
{
state.setShaderForGradientFill (fill);
state.fillRectangleList (clip, area, fill.colour.getPixelARGB());
state.setShader (nullptr);
}
#endif
else
{
for (RectangleList::Iterator i (clip); i.next();)
{
const Rectangle<int> r (i.getRectangle()->getIntersection (area));
if (! r.isEmpty())
state.fillTexture (r, fill, nullptr, nullptr, replaceContents);
}
}
}
void fillRect (const Rectangle<float>& area, const FillType& fill)
{
if (fill.isColour())
{
state.setTexturesEnabled (0);
state.setPremultipliedBlendingMode();
for (RectangleList::Iterator i (clip); i.next();)
{
const Rectangle<float> r (i.getRectangle()->toFloat().getIntersection (area));
if (! r.isEmpty())
state.fillRect (r, fill.colour.getPixelARGB());
}
}
#if JUCE_USE_OPENGL_SHADERS
else if (state.shadersAvailable() && fill.isGradient())
{
state.setShaderForGradientFill (fill);
for (RectangleList::Iterator i (clip); i.next();)
{
const Rectangle<float> r (i.getRectangle()->toFloat().getIntersection (area));
if (! r.isEmpty())
state.fillRect (r, fill.colour.getPixelARGB());
}
state.setShader (nullptr);
}
#endif
else
{
EdgeTable et (area);
fillEdgeTable (et, fill);
}
}
void drawImage (const OpenGLTextureFromImage& source, const AffineTransform& transform,
float alpha, const Rectangle<int>& clipArea, const PositionedTexture* mask)
{
for (RectangleList::Iterator i (clip); i.next();)
{
const Rectangle<int> bufferArea (i.getRectangle()->getIntersection (clipArea));
if (! bufferArea.isEmpty())
state.renderImage (source, bufferArea, transform, alpha, mask, nullptr, false, false);
}
}
void fillEdgeTable (EdgeTable& et, const FillType& fill)
{
if (fill.isColour())
{
state.setPremultipliedBlendingMode();
if (clip.containsRectangle (et.getMaximumBounds()))
{
state.fillEdgeTable (et, fill.colour.getPixelARGB());
}
else
{
EdgeTable et2 (clip);
et2.clipToEdgeTable (et);
state.fillEdgeTable (et2, fill.colour.getPixelARGB());
}
}
#if JUCE_USE_OPENGL_SHADERS
else if (state.shadersAvailable() && fill.isGradient())
{
state.setShaderForGradientFill (fill);
if (clip.containsRectangle (et.getMaximumBounds()))
{
state.fillEdgeTable (et, fill.colour.getPixelARGB());
}
else
{
EdgeTable et2 (clip);
et2.clipToEdgeTable (et);
state.fillEdgeTable (et2, fill.colour.getPixelARGB());
}
state.setShader (nullptr);
}
#endif
else
{
OpenGLTexture* texture = state.getTexture (clip.getBounds().getWidth(), clip.getBounds().getHeight());
PositionedTexture pt (*texture, et, clip.getBounds());
for (RectangleList::Iterator i (clip); i.next();)
{
const Rectangle<int> r (i.getRectangle()->getIntersection (pt.clip));
if (! r.isEmpty())
state.fillTexture (r, fill, &pt, nullptr, false);
}
state.releaseTexture (texture);
}
}
private:
RectangleList clip;
Ptr toMask() const
{
return new ClipRegion_Mask (state, clip);
}
ClipRegion_RectangleList& operator= (const ClipRegion_RectangleList&);
};
//==============================================================================
class OpenGLRenderer::SavedState
{
public:
SavedState (GLState* const state_)
: clip (new ClipRegion_RectangleList (*state_, Rectangle<int> (state_->target.width, state_->target.height))),
transform (0, 0), interpolationQuality (Graphics::mediumResamplingQuality),
state (state_), transparencyLayerAlpha (1.0f)
{
}
SavedState (const SavedState& other)
: clip (other.clip), transform (other.transform), font (other.font),
fillType (other.fillType), interpolationQuality (other.interpolationQuality),
state (other.state), transparencyLayerAlpha (other.transparencyLayerAlpha),
transparencyLayer (other.transparencyLayer), previousTarget (other.previousTarget.createCopy())
{
}
bool clipToRectangle (const Rectangle<int>& r)
{
if (clip != nullptr)
{
if (transform.isOnlyTranslated)
{
cloneClipIfMultiplyReferenced();
clip = clip->clipToRectangle (transform.translated (r));
}
else
{
Path p;
p.addRectangle (r);
clipToPath (p, AffineTransform::identity);
}
}
return clip != nullptr;
}
bool clipToRectangleList (const RectangleList& r)
{
if (clip != nullptr)
{
if (transform.isOnlyTranslated)
{
cloneClipIfMultiplyReferenced();
RectangleList offsetList (r);
offsetList.offsetAll (transform.xOffset, transform.yOffset);
clip = clip->clipToRectangleList (offsetList);
}
else
{
clipToPath (r.toPath(), AffineTransform::identity);
}
}
return clip != nullptr;
}
bool excludeClipRectangle (const Rectangle<int>& r)
{
if (clip != nullptr)
{
cloneClipIfMultiplyReferenced();
if (transform.isOnlyTranslated)
{
clip = clip->excludeClipRectangle (transform.translated (r));
}
else
{
Path p;
p.addRectangle (r.toFloat());
p.applyTransform (transform.complexTransform);
p.addRectangle (clip->getClipBounds().toFloat());
p.setUsingNonZeroWinding (false);
clip = clip->clipToPath (p, AffineTransform::identity);
}
}
return clip != nullptr;
}
void clipToPath (const Path& p, const AffineTransform& t)
{
if (clip != nullptr)
{
cloneClipIfMultiplyReferenced();
clip = clip->clipToPath (p, transform.getTransformWith (t));
}
}
void clipToImageAlpha (const Image& sourceImage, const AffineTransform& t)
{
if (clip != nullptr)
{
Path p;
p.addRectangle (sourceImage.getBounds());
clipToPath (p, t);
if (sourceImage.hasAlphaChannel() && clip != nullptr)
{
cloneClipIfMultiplyReferenced();
clip = clip->clipToImageAlpha (sourceImage, transform.getTransformWith (t));
}
}
}
bool clipRegionIntersects (const Rectangle<int>& r) const
{
return clip != nullptr
&& (transform.isOnlyTranslated ? clip->getClipBounds().intersects (transform.translated (r))
: getClipBounds().intersects (r));
}
Rectangle<int> getClipBounds() const
{
return clip != nullptr ? transform.deviceSpaceToUserSpace (clip->getClipBounds())
: Rectangle<int>();
}
SavedState* beginTransparencyLayer (float opacity)
{
SavedState* s = new SavedState (*this);
if (clip != nullptr)
{
const Rectangle<int> clipBounds (clip->getClipBounds());
state->flushQuads();
s->transparencyLayer = Image (OpenGLImageType().create (Image::ARGB, clipBounds.getWidth(), clipBounds.getHeight(), true));
s->previousTarget = new OpenGLTarget (state->target);
state->target = OpenGLTarget (*OpenGLImageType::getFrameBufferFrom (s->transparencyLayer), clipBounds.getPosition());
s->transparencyLayerAlpha = opacity;
s->cloneClipIfMultiplyReferenced();
s->state->target.makeActiveFor2D();
}
return s;
}
void endTransparencyLayer (SavedState& finishedLayerState)
{
if (clip != nullptr)
{
jassert (finishedLayerState.previousTarget != nullptr);
state->flushQuads();
state->target = *finishedLayerState.previousTarget;
finishedLayerState.previousTarget = nullptr;
state->target.makeActiveFor2D();
const Rectangle<int> clipBounds (clip->getClipBounds());
clip->drawImage (finishedLayerState.transparencyLayer,
AffineTransform::translation ((float) clipBounds.getX(), (float) clipBounds.getY()),
finishedLayerState.transparencyLayerAlpha, clipBounds, nullptr);
}
}
//==============================================================================
void fillRect (const Rectangle<int>& r, const bool replaceContents)
{
if (clip != nullptr)
{
if (transform.isOnlyTranslated)
{
clip->fillRect (r.translated (transform.xOffset, transform.yOffset),
getFillType(), replaceContents);
}
else
{
Path p;
p.addRectangle (r);
fillPath (p, AffineTransform::identity);
}
}
}
void fillRect (const Rectangle<float>& r)
{
if (clip != nullptr)
{
if (transform.isOnlyTranslated)
{
const Rectangle<float> c (r.translated ((float) transform.xOffset, (float) transform.yOffset)
.getIntersection (clip->getClipBounds().toFloat()));
if (! c.isEmpty())
clip->fillRect (c, getFillType());
}
else
{
Path p;
p.addRectangle (r);
fillPath (p, AffineTransform::identity);
}
}
}
void fillPath (const Path& path, const AffineTransform& t)
{
if (clip != nullptr)
{
EdgeTable et (clip->getClipBounds(), path, transform.getTransformWith (t));
fillEdgeTable (et);
}
}
void drawGlyph (int glyphNumber, const AffineTransform& t)
{
if (clip != nullptr)
{
if (transform.isOnlyTranslated && t.isOnlyTranslation())
{
RenderingHelpers::GlyphCache <CachedGlyphEdgeTable, SavedState>::getInstance()
.drawGlyph (*this, font, glyphNumber,
transform.xOffset + t.getTranslationX(),
transform.yOffset + t.getTranslationY());
}
else
{
const float fontHeight = font.getHeight();
const ScopedPointer<EdgeTable> et (font.getTypeface()->getEdgeTableForGlyph
(glyphNumber, transform.getTransformWith (AffineTransform::scale (fontHeight * font.getHorizontalScale(), fontHeight)
.followedBy (t))));
if (et != nullptr)
fillEdgeTable (*et);
}
}
}
void fillEdgeTable (const EdgeTable& et, const float x, const int y)
{
if (clip != nullptr)
{
EdgeTable et2 (et);
et2.translate (x, y);
fillEdgeTable (et2);
}
}
void drawLine (const Line <float>& line)
{
Path p;
p.addLineSegment (line, 1.0f);
fillPath (p, AffineTransform::identity);
}
//==============================================================================
void drawImage (const Image& image, const AffineTransform& trans)
{
if (clip == nullptr || fillType.colour.isTransparent())
return;
const Rectangle<int> clipBounds (clip->getClipBounds());
const AffineTransform t (transform.getTransformWith (trans));
const float alpha = fillType.colour.getFloatAlpha();
if (t.isOnlyTranslation())
{
int tx = (int) (t.getTranslationX() * 256.0f);
int ty = (int) (t.getTranslationY() * 256.0f);
if (((tx | ty) & 0xf8) == 0)
{
tx = ((tx + 128) >> 8);
ty = ((ty + 128) >> 8);
clip->drawImage (image, t, alpha, Rectangle<int> (tx, ty, image.getWidth(), image.getHeight()), nullptr);
return;
}
}
if (! t.isSingularity())
{
Path p;
p.addRectangle (image.getBounds());
OpenGLTexture* texture = state->getTexture (clipBounds.getWidth(), clipBounds.getHeight());
EdgeTable et (clipBounds, p, t);
PositionedTexture pt (*texture, et, clipBounds);
clip->drawImage (image, t, alpha, clipBounds, &pt);
state->releaseTexture (texture);
}
}
void setFillType (const FillType& newFill)
{
fillType = newFill;
state->resetGradient();
}
//==============================================================================
ClipRegionBase::Ptr clip;
RenderingHelpers::TranslationOrTransform transform;
Font font;
FillType fillType;
Graphics::ResamplingQuality interpolationQuality;
GLState* state;
private:
float transparencyLayerAlpha;
Image transparencyLayer;
ScopedPointer<OpenGLTarget> previousTarget;
void cloneClipIfMultiplyReferenced()
{
if (clip->getReferenceCount() > 1)
clip = clip->clone();
}
FillType getFillType() const
{
return fillType.transformed (transform.getTransform());
}
void fillEdgeTable (EdgeTable& et)
{
clip->fillEdgeTable (et, getFillType());
}
class CachedGlyphEdgeTable
{
public:
CachedGlyphEdgeTable() : glyph (0), lastAccessCount (0) {}
void draw (OpenGLRenderer::SavedState& state, float x, const float y) const
{
if (snapToIntegerCoordinate)
x = std::floor (x + 0.5f);
if (edgeTable != nullptr)
state.fillEdgeTable (*edgeTable, x, roundToInt (y));
}
void generate (const Font& newFont, const int glyphNumber)
{
font = newFont;
snapToIntegerCoordinate = newFont.getTypeface()->isHinted();
glyph = glyphNumber;
const float fontHeight = font.getHeight();
edgeTable = font.getTypeface()->getEdgeTableForGlyph (glyphNumber,
AffineTransform::scale (fontHeight * font.getHorizontalScale(), fontHeight)
#if JUCE_MAC || JUCE_IOS
.translated (0.0f, -0.5f)
#endif
);
}
Font font;
int glyph, lastAccessCount;
bool snapToIntegerCoordinate;
private:
ScopedPointer <EdgeTable> edgeTable;
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (CachedGlyphEdgeTable);
};
SavedState& operator= (const SavedState&);
};
//==============================================================================
OpenGLRenderer::OpenGLRenderer (OpenGLComponent& target)
: glState (new GLState (OpenGLTarget (target.getFrameBufferID(), target.getWidth(), target.getHeight()))),
stack (new SavedState (glState))
{
}
OpenGLRenderer::OpenGLRenderer (OpenGLFrameBuffer& target)
: glState (new GLState (OpenGLTarget (target, Point<int>()))),
stack (new SavedState (glState))
{
}
OpenGLRenderer::OpenGLRenderer (unsigned int frameBufferID, int width, int height)
: glState (new GLState (OpenGLTarget (frameBufferID, width, height))),
stack (new SavedState (glState))
{
}
OpenGLRenderer::~OpenGLRenderer()
{
}
bool OpenGLRenderer::isVectorDevice() const { return false; }
void OpenGLRenderer::setOrigin (int x, int y) { stack->transform.setOrigin (x, y); }
void OpenGLRenderer::addTransform (const AffineTransform& t) { stack->transform.addTransform (t); }
float OpenGLRenderer::getScaleFactor() { return stack->transform.getScaleFactor(); }
Rectangle<int> OpenGLRenderer::getClipBounds() const { return stack->getClipBounds(); }
bool OpenGLRenderer::isClipEmpty() const { return stack->clip == nullptr; }
bool OpenGLRenderer::clipRegionIntersects (const Rectangle<int>& r) { return stack->clipRegionIntersects (r); }
bool OpenGLRenderer::clipToRectangle (const Rectangle<int>& r) { return stack->clipToRectangle (r); }
bool OpenGLRenderer::clipToRectangleList (const RectangleList& r) { return stack->clipToRectangleList (r); }
void OpenGLRenderer::excludeClipRectangle (const Rectangle<int>& r) { stack->excludeClipRectangle (r); }
void OpenGLRenderer::clipToPath (const Path& path, const AffineTransform& t) { stack->clipToPath (path, t); }
void OpenGLRenderer::clipToImageAlpha (const Image& im, const AffineTransform& t) { stack->clipToImageAlpha (im, t); }
void OpenGLRenderer::saveState() { stack.save(); }
void OpenGLRenderer::restoreState() { stack.restore(); }
void OpenGLRenderer::beginTransparencyLayer (float opacity) { stack.beginTransparencyLayer (opacity); }
void OpenGLRenderer::endTransparencyLayer() { stack.endTransparencyLayer(); }
void OpenGLRenderer::setFill (const FillType& fillType) { stack->setFillType (fillType); }
void OpenGLRenderer::setOpacity (float newOpacity) { stack->fillType.setOpacity (newOpacity); }
void OpenGLRenderer::setInterpolationQuality (Graphics::ResamplingQuality quality) { stack->interpolationQuality = quality; }
void OpenGLRenderer::fillRect (const Rectangle<int>& r, bool replace) { stack->fillRect (r, replace); }
void OpenGLRenderer::fillPath (const Path& path, const AffineTransform& t) { stack->fillPath (path, t); }
void OpenGLRenderer::drawImage (const Image& im, const AffineTransform& t) { stack->drawImage (im, t); }
void OpenGLRenderer::drawVerticalLine (int x, float top, float bottom) { if (top < bottom) stack->fillRect (Rectangle<float> ((float) x, top, 1.0f, bottom - top)); }
void OpenGLRenderer::drawHorizontalLine (int y, float left, float right) { if (left < right) stack->fillRect (Rectangle<float> (left, (float) y, right - left, 1.0f)); }
void OpenGLRenderer::drawGlyph (int glyphNumber, const AffineTransform& t) { stack->drawGlyph (glyphNumber, t); }
void OpenGLRenderer::drawLine (const Line <float>& line) { stack->drawLine (line); }
void OpenGLRenderer::setFont (const Font& newFont) { stack->font = newFont; }
Font OpenGLRenderer::getFont() { return stack->font; }
END_JUCE_NAMESPACE