1
0
Fork 0
mirror of https://github.com/Neargye/magic_enum.git synced 2026-01-10 23:44:29 +00:00
magic_enum/include/magic_enum.hpp
2019-07-25 00:37:59 +05:00

473 lines
19 KiB
C++

// __ __ _ ______ _____
// | \/ | (_) | ____| / ____|_ _
// | \ / | __ _ __ _ _ ___ | |__ _ __ _ _ _ __ ___ | | _| |_ _| |_
// | |\/| |/ _` |/ _` | |/ __| | __| | '_ \| | | | '_ ` _ \ | | |_ _|_ _|
// | | | | (_| | (_| | | (__ | |____| | | | |_| | | | | | | | |____|_| |_|
// |_| |_|\__,_|\__, |_|\___| |______|_| |_|\__,_|_| |_| |_| \_____|
// __/ | https://github.com/Neargye/magic_enum
// |___/ vesion 0.5.0
//
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
// SPDX-License-Identifier: MIT
// Copyright (c) 2019 Daniil Goncharov <neargye@gmail.com>.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef NEARGYE_MAGIC_ENUM_HPP
#define NEARGYE_MAGIC_ENUM_HPP
#include <array>
#include <cassert>
#include <cstddef>
#include <iosfwd>
#include <limits>
#include <string_view>
#include <optional>
#include <type_traits>
#include <utility>
// Enum value must be greater or equals than MAGIC_ENUM_RANGE_MIN. By default MAGIC_ENUM_RANGE_MIN = -128.
// If need another min range for all enum types by default, redefine the macro MAGIC_ENUM_RANGE_MIN.
#if !defined(MAGIC_ENUM_RANGE_MIN)
# define MAGIC_ENUM_RANGE_MIN -128
#endif
// Enum value must be less or equals than MAGIC_ENUM_RANGE_MAX. By default MAGIC_ENUM_RANGE_MAX = 128.
// If need another max range for all enum types by default, redefine the macro MAGIC_ENUM_RANGE_MAX.
#if !defined(MAGIC_ENUM_RANGE_MAX)
# define MAGIC_ENUM_RANGE_MAX 128
#endif
namespace magic_enum {
// Enum value must be in range [MAGIC_ENUM_RANGE_MIN, MAGIC_ENUM_RANGE_MAX]. By default MAGIC_ENUM_RANGE_MIN = -128, MAGIC_ENUM_RANGE_MAX = 128.
// If need another range for all enum types by default, redefine the macro MAGIC_ENUM_RANGE_MIN and MAGIC_ENUM_RANGE_MAX.
// If need another range for specific enum type, add specialization enum_range for necessary enum type.
template <typename E>
struct enum_range final {
static_assert(std::is_enum_v<E>, "magic_enum::enum_range requires enum type.");
static constexpr int min = MAGIC_ENUM_RANGE_MIN;
static constexpr int max = MAGIC_ENUM_RANGE_MAX;
static_assert(max > min, "magic_enum::enum_range requires max > min.");
};
static_assert(MAGIC_ENUM_RANGE_MIN <= 0,
"MAGIC_ENUM_RANGE_MIN must be less or equals than 0.");
static_assert(MAGIC_ENUM_RANGE_MIN > (std::numeric_limits<int>::min)(),
"MAGIC_ENUM_RANGE_MIN must be greater than INT_MIN.");
static_assert(MAGIC_ENUM_RANGE_MAX > 0,
"MAGIC_ENUM_RANGE_MAX must be greater than 0.");
static_assert(MAGIC_ENUM_RANGE_MAX < (std::numeric_limits<int>::max)(),
"MAGIC_ENUM_RANGE_MAX must be less than INT_MAX.");
static_assert(MAGIC_ENUM_RANGE_MAX > MAGIC_ENUM_RANGE_MIN,
"MAGIC_ENUM_RANGE_MAX must be greater than MAGIC_ENUM_RANGE_MIN.");
namespace detail {
template <typename E>
inline constexpr auto min_v = enum_range<E>::min > (std::numeric_limits<std::underlying_type_t<E>>::min)()
? enum_range<E>::min
: (std::numeric_limits<std::underlying_type_t<E>>::min)();
template <typename E>
[[nodiscard]] constexpr auto range_impl() {
static_assert(std::is_enum_v<E>, "magic_enum::detail::range_impl requires enum type.");
static_assert(enum_range<E>::min > (std::numeric_limits<int>::min)(), "magic_enum::enum_range requires min must be greater than INT_MIN.");
static_assert(enum_range<E>::max < (std::numeric_limits<int>::max)(), "magic_enum::enum_range requires max must be less than INT_MAX.");
static_assert(enum_range<E>::max > enum_range<E>::min, "magic_enum::enum_range requires max > min.");
using U = std::underlying_type_t<E>;
constexpr auto max = enum_range<E>::max < (std::numeric_limits<U>::max)() ? enum_range<E>::max : (std::numeric_limits<U>::max)();
return std::make_integer_sequence<int, max - min_v<E> + 1>{};
}
template <typename E>
inline constexpr auto range_v = range_impl<E>();
[[nodiscard]] constexpr std::string_view pretty_name(std::string_view name) noexcept {
for (std::size_t i = name.length(); i > 0; --i) {
if (!((name[i - 1] >= '0' && name[i - 1] <= '9') ||
(name[i - 1] >= 'a' && name[i - 1] <= 'z') ||
(name[i - 1] >= 'A' && name[i - 1] <= 'Z') ||
(name[i - 1] == '_'))) {
name.remove_prefix(i);
break;
}
}
if (name.length() > 0 && ((name.front() >= 'a' && name.front() <= 'z') ||
(name.front() >= 'A' && name.front() <= 'Z') ||
(name.front() == '_'))) {
return name;
}
return {}; // Invalid name.
}
template <typename E, E V>
[[nodiscard]] constexpr std::string_view name_impl() noexcept {
static_assert(std::is_enum_v<E>, "magic_enum::detail::name_impl requires enum type.");
#if defined(__clang__)
return pretty_name({__PRETTY_FUNCTION__, sizeof(__PRETTY_FUNCTION__) - 2});
#elif defined(__GNUC__) && __GNUC__ >= 9
return pretty_name({__PRETTY_FUNCTION__, sizeof(__PRETTY_FUNCTION__) - 51});
#elif defined(_MSC_VER)
return pretty_name({__FUNCSIG__, sizeof(__FUNCSIG__) - 17});
#else
return {}; // Unsupported compiler.
#endif
}
template <typename E, int... I>
[[nodiscard]] constexpr auto strings_impl(std::integer_sequence<int, I...>) noexcept {
static_assert(std::is_enum_v<E>, "magic_enum::detail::strings_impl requires enum type.");
return std::array<std::string_view, sizeof...(I)>{{name_impl<E, static_cast<E>(I + min_v<E>)>()...}};
}
template <typename E>
inline constexpr auto strings_v = strings_impl<E>(range_v<E>);
template <typename E>
[[nodiscard]] constexpr std::string_view name_impl(E value) noexcept {
static_assert(std::is_enum_v<E>, "magic_enum::detail::name_impl requires enum type.");
constexpr auto strings = strings_v<E>;
if (auto i = static_cast<std::size_t>((static_cast<int>(value) - min_v<E>)); i < strings.size()) {
return strings[i];
}
return {}; // Value out of range.
}
template <typename E, int... I>
[[nodiscard]] constexpr auto values_impl(std::integer_sequence<int, I...>) noexcept {
static_assert(std::is_enum_v<E>, "magic_enum::detail::values_impl requires enum type.");
constexpr std::array<bool, sizeof...(I)> valid{{!name_impl<E, static_cast<E>(I + min_v<E>)>().empty()...}};
constexpr auto num_valid = ((valid[I] ? 1 : 0) + ...);
std::array<E, num_valid> values{};
for (std::size_t i = 0, v = 0; i < valid.size() && v < num_valid; ++i) {
if (valid[i]) {
values[v++] = static_cast<E>(static_cast<int>(i) + min_v<E>);
}
}
return values;
}
template <typename E>
inline constexpr auto values_v = values_impl<E>(range_v<E>);
template <typename E>
inline constexpr auto count_v = values_v<E>.size();
template <typename E, std::size_t... I>
[[nodiscard]] constexpr auto names_impl(std::integer_sequence<std::size_t, I...>) noexcept {
static_assert(std::is_enum_v<E>, "magic_enum::detail::names_impl requires enum type.");
return std::array<std::string_view, sizeof...(I)>{{name_impl<E, values_v<E>[I]>()...}};
}
template <typename E>
inline constexpr auto names_v = names_impl<E>(std::make_index_sequence<count_v<E>>{});
template <typename E, std::size_t... I>
[[nodiscard]] constexpr auto entries_impl(std::integer_sequence<std::size_t, I...>) noexcept {
static_assert(std::is_enum_v<E>, "magic_enum::detail::entries_impl requires enum type.");
return std::array<std::pair<E, std::string_view>, sizeof...(I)>{{{values_v<E>[I], names_v<E>[I]}...}};
}
template <typename E>
inline constexpr auto entries_v = entries_impl<E>(std::make_index_sequence<count_v<E>>{});
template <typename T>
using remove_cvref_t = std::remove_cv_t<std::remove_reference_t<T>>;
template <typename T>
using enable_if_enum_t = std::enable_if_t<std::is_enum_v<remove_cvref_t<T>>, remove_cvref_t<T>>;
template <typename E, typename D>
inline constexpr bool check_enum_v = std::is_same_v<remove_cvref_t<E>, D> && std::is_enum_v<D>;
template <typename T, bool = std::is_enum_v<T>>
struct is_scoped_enum_impl : std::false_type {};
template <typename T>
struct is_scoped_enum_impl<T, true> : std::bool_constant<!std::is_convertible_v<T, std::underlying_type_t<T>>> {};
template <typename T, bool = std::is_enum_v<T>>
struct is_unscoped_enum_impl : std::false_type {};
template <typename T>
struct is_unscoped_enum_impl<T, true> : std::bool_constant<std::is_convertible_v<T, std::underlying_type_t<T>>> {};
template <typename T, typename = T>
struct is_fixed_enum_impl : std::false_type {};
template <typename T>
struct is_fixed_enum_impl<T, decltype(T{0})> : std::is_enum<T> {};
template <typename T, bool = std::is_enum_v<T>>
struct underlying_type_impl {};
template <typename T>
struct underlying_type_impl<T, true> : std::underlying_type<T> {};
} // namespace magic_enum::detail
// Checks whether T is an Unscoped enumeration type.
// Provides the member constant value which is equal to true, if T is an [Unscoped enumeration](https://en.cppreference.com/w/cpp/language/enum#Unscoped_enumeration) type. Otherwise, value is equal to false.
template <typename T>
struct is_unscoped_enum : detail::is_unscoped_enum_impl<T> {};
template <typename T>
inline constexpr bool is_unscoped_enum_v = is_unscoped_enum<T>::value;
// Checks whether T is an Scoped enumeration type.
// Provides the member constant value which is equal to true, if T is an [Scoped enumeration](https://en.cppreference.com/w/cpp/language/enum#Scoped_enumerations) type. Otherwise, value is equal to false.
template <typename T>
struct is_scoped_enum : detail::is_scoped_enum_impl<T> {};
template <typename T>
inline constexpr bool is_scoped_enum_v = is_scoped_enum<T>::value;
// Checks whether T is an Fixed enumeration type.
// Provides the member constant value which is equal to true, if T is an [Fixed enumeration](https://en.cppreference.com/w/cpp/language/enum) type. Otherwise, value is equal to false.
template <typename T>
struct is_fixed_enum : detail::is_fixed_enum_impl<T> {};
template <typename T>
inline constexpr bool is_fixed_enum_v = is_fixed_enum<T>::value;
// If T is a complete enumeration type, provides a member typedef type that names the underlying type of T.
// Otherwise, if T is not an enumeration type, there is no member type. Otherwise (T is an incomplete enumeration type), the program is ill-formed.
template <typename T>
struct underlying_type : detail::underlying_type_impl<T> {};
template <typename T>
using underlying_type_t = typename underlying_type<T>::type;
// Obtains enum value from enum string name.
// Returns std::optional with enum value.
template <typename E, typename D = detail::enable_if_enum_t<E>>
[[nodiscard]] constexpr std::optional<D> enum_cast(std::string_view value) noexcept {
static_assert(detail::check_enum_v<E, D>, "magic_enum::enum_cast requires enum type.");
constexpr auto values = detail::values_v<D>;
constexpr auto count = detail::count_v<D>;
constexpr auto names = detail::names_v<D>;
for (std::size_t i = 0; i < count; ++i) {
if (names[i] == value) {
return values[i];
}
}
return std::nullopt; // Invalid value or out of range.
}
// Obtains enum value from integer value.
// Returns std::optional with enum value.
template <typename E, typename D = detail::enable_if_enum_t<E>>
[[nodiscard]] constexpr std::optional<D> enum_cast(std::underlying_type_t<D> value) noexcept {
static_assert(detail::check_enum_v<E, D>, "magic_enum::enum_cast requires enum type.");
if (detail::name_impl<D>(static_cast<D>(value)).empty()) {
return std::nullopt; // Invalid value or out of range.
}
return static_cast<D>(value);
}
// Returns integer value from enum value.
template <typename E, typename D = detail::enable_if_enum_t<E>>
[[nodiscard]] constexpr auto enum_integer(E value) noexcept {
static_assert(detail::check_enum_v<E, D>, "magic_enum::enum_integer requires enum type.");
return static_cast<std::underlying_type_t<D>>(value);
}
// Returns enum value at specified index.
// No bounds checking is performed: the behavior is undefined if index >= number of enum values.
template<typename E, typename D = detail::enable_if_enum_t<E>>
[[nodiscard]] constexpr auto enum_value(std::size_t index) {
static_assert(detail::check_enum_v<E, D>, "magic_enum::enum_value requires enum type.");
constexpr auto values = detail::values_v<D>;
return assert(index < values.size()), values[index];
}
// Obtains value enum sequence.
// Returns std::array with enum values, sorted by enum value.
template <typename E, typename D = detail::enable_if_enum_t<E>>
[[nodiscard]] constexpr auto enum_values() noexcept {
static_assert(detail::check_enum_v<E, D>, "magic_enum::enum_values requires enum type.");
constexpr auto values = detail::values_v<D>;
return values;
}
// Returns number of enum values.
template <typename E, typename D = detail::enable_if_enum_t<E>>
[[nodiscard]] constexpr std::size_t enum_count() noexcept {
static_assert(detail::check_enum_v<E, D>, "magic_enum::enum_count requires enum type.");
constexpr auto count = detail::count_v<D>;
return count;
}
// Returns string enum name from static storage enum variable.
// This version is much lighter on the compile times and is not restricted to the enum_range limitation.
template <auto V, typename D = detail::enable_if_enum_t<decltype(V)>>
[[nodiscard]] constexpr std::string_view enum_name() noexcept {
static_assert(detail::check_enum_v<decltype(V), D>, "magic_enum::enum_name requires enum type.");
return detail::name_impl<D, V>();
}
// Returns string enum name from enum value.
template <typename E, typename D = detail::enable_if_enum_t<E>>
[[nodiscard]] constexpr std::string_view enum_name(E value) noexcept {
static_assert(detail::check_enum_v<E, D>, "magic_enum::enum_name requires enum type.");
return detail::name_impl<D>(value);
}
// Obtains string enum name sequence.
// Returns std::array with string enum names, sorted by enum value.
template <typename E, typename D = detail::enable_if_enum_t<E>>
[[nodiscard]] constexpr auto enum_names() noexcept {
static_assert(detail::check_enum_v<E, D>, "magic_enum::enum_names requires enum type.");
constexpr auto names = detail::names_v<D>;
return names;
}
// Obtains pair (value enum, string enum name) sequence.
// Returns std::array with std::pair (value enum, string enum name), sorted by enum value.
template <typename E, typename D = detail::enable_if_enum_t<E>>
[[nodiscard]] constexpr auto enum_entries() noexcept {
static_assert(detail::check_enum_v<E, D>, "magic_enum::enum_entries requires enum type.");
constexpr auto entries = detail::entries_v<D>;
return entries;
}
namespace ostream_operators {
template <class Char, class Traits, typename E, typename D = detail::enable_if_enum_t<E>>
std::basic_ostream<Char, Traits>& operator<<(std::basic_ostream<Char, Traits>& os, E value) {
static_assert(detail::check_enum_v<E, D>, "magic_enum::ostream_operators::operator<< requires enum type.");
if (auto name = detail::name_impl<D>(value); !name.empty()) {
for (auto c : name) {
os.put(c);
}
} else {
os << static_cast<std::underlying_type_t<D>>(value);
}
return os;
}
template <class Char, class Traits, typename E, typename D = detail::enable_if_enum_t<E>>
std::basic_ostream<Char, Traits>& operator<<(std::basic_ostream<Char, Traits>& os, std::optional<E> value) {
static_assert(detail::check_enum_v<E, D>, "magic_enum::ostream_operators::operator<< requires enum type.");
if (value.has_value()) {
if (auto name = detail::name_impl<D>(value.value()); !name.empty()) {
for (auto c : name) {
os.put(c);
}
} else {
os << static_cast<std::underlying_type_t<D>>(value.value());
}
}
return os;
}
} // namespace magic_enum::ostream_operators
namespace bitwise_operators {
template <typename E, typename D = detail::enable_if_enum_t<E>>
constexpr E operator~(E rhs) {
static_assert(detail::check_enum_v<E, D>, "magic_enum::bitwise_operators::operator~ requires enum type.");
using U = std::underlying_type_t<D>;
return static_cast<E>(~static_cast<U>(rhs));
}
template <typename E, typename D = detail::enable_if_enum_t<E>>
constexpr E operator|(E lhs, E rhs) {
static_assert(detail::check_enum_v<E, D>, "magic_enum::bitwise_operators::operator| requires enum type.");
using U = std::underlying_type_t<D>;
return static_cast<E>(static_cast<U>(lhs) | static_cast<U>(rhs));
}
template <typename E, typename D = detail::enable_if_enum_t<E>>
constexpr E operator&(E lhs, E rhs) {
static_assert(detail::check_enum_v<E, D>, "magic_enum::bitwise_operators::operator& requires enum type.");
using U = std::underlying_type_t<D>;
return static_cast<E>(static_cast<U>(lhs) & static_cast<U>(rhs));
}
template <typename E, typename D = detail::enable_if_enum_t<E>>
constexpr E operator^(E lhs, E rhs) {
static_assert(detail::check_enum_v<E, D>, "magic_enum::bitwise_operators::operator^ requires enum type.");
using U = std::underlying_type_t<D>;
return static_cast<E>(static_cast<U>(lhs) ^ static_cast<U>(rhs));
}
template <typename E, typename D = detail::enable_if_enum_t<E>>
constexpr E& operator|=(E& lhs, E rhs) {
static_assert(detail::check_enum_v<E, D>, "magic_enum::bitwise_operators::operator|= requires enum type.");
using U = std::underlying_type_t<D>;
return lhs = static_cast<E>(static_cast<U>(lhs) | static_cast<U>(rhs));
}
template <typename E, typename D = detail::enable_if_enum_t<E>>
constexpr E& operator&=(E& lhs, E rhs) {
static_assert(detail::check_enum_v<E, D>, "magic_enum::bitwise_operators::operator%= requires enum type.");
using U = std::underlying_type_t<D>;
return lhs = static_cast<E>(static_cast<U>(lhs) & static_cast<U>(rhs));
}
template <typename E, typename D = detail::enable_if_enum_t<E>>
constexpr E& operator^=(E& lhs, E rhs) {
static_assert(detail::check_enum_v<E, D>, "magic_enum::bitwise_operators::operator^= requires enum type.");
using U = std::underlying_type_t<D>;
return lhs = static_cast<E>(static_cast<U>(lhs) ^ static_cast<U>(rhs));
}
} // namespace magic_enum::bitwise_operators
} // namespace magic_enum
#endif // NEARGYE_MAGIC_ENUM_HPP