1
0
Fork 0
mirror of https://github.com/juce-framework/JUCE.git synced 2026-01-10 23:44:24 +00:00
JUCE/examples/DSP module plugin demo/Source/PluginProcessor.cpp

286 lines
11 KiB
C++

/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2017 - ROLI Ltd.
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 5 End-User License
Agreement and JUCE 5 Privacy Policy (both updated and effective as of the
27th April 2017).
End User License Agreement: www.juce.com/juce-5-licence
Privacy Policy: www.juce.com/juce-5-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
#include "PluginProcessor.h"
#include "PluginEditor.h"
//==============================================================================
DspModulePluginDemoAudioProcessor::DspModulePluginDemoAudioProcessor()
: AudioProcessor (BusesProperties()
.withInput ("Input", AudioChannelSet::stereo(), true)
.withOutput ("Output", AudioChannelSet::stereo(), true)),
lowPassFilter (dsp::IIR::Coefficients<float>::makeFirstOrderLowPass (48000.0, 20000.f)),
highPassFilter (dsp::IIR::Coefficients<float>::makeFirstOrderHighPass (48000.0, 20.0f)),
waveShapers { {std::tanh}, {dsp::FastMathApproximations::tanh} },
clipping { clip }
{
// Oversampling 2 times with IIR filtering
oversampling = new dsp::Oversampling<float> (2, 1, dsp::Oversampling<float>::filterHalfBandPolyphaseIIR, false);
addParameter (inputVolumeParam = new AudioParameterFloat ("INPUT", "Input Volume", { 0.f, 60.f, 0.f, 1.0f }, 0.f, "dB"));
addParameter (highPassFilterFreqParam = new AudioParameterFloat ("HPFREQ", "Pre Highpass Freq.", { 20.f, 20000.f, 0.f, 0.5f }, 20.f, "Hz"));
addParameter (lowPassFilterFreqParam = new AudioParameterFloat ("LPFREQ", "Post Lowpass Freq.", { 20.f, 20000.f, 0.f, 0.5f }, 20000.f, "Hz"));
addParameter (stereoParam = new AudioParameterChoice ("STEREO", "Stereo Processing", { "Always mono", "Yes" }, 1));
addParameter (slopeParam = new AudioParameterChoice ("SLOPE", "Slope", { "-6 dB / octave", "-12 dB / octave" }, 0));
addParameter (waveshaperParam = new AudioParameterChoice ("WVSHP", "Waveshaper", { "std::tanh", "Fast tanh approx." }, 0));
addParameter (cabinetTypeParam = new AudioParameterChoice ("CABTYPE", "Cabinet Type", { "Guitar amplifier 8'' cabinet ",
"Cassette recorder cabinet" }, 0));
addParameter (cabinetSimParam = new AudioParameterBool ("CABSIM", "Cabinet Sim", false));
addParameter (oversamplingParam = new AudioParameterBool ("OVERS", "Oversampling", false));
addParameter (outputVolumeParam = new AudioParameterFloat ("OUTPUT", "Output Volume", { -40.f, 40.f, 0.f, 1.0f }, 0.f, "dB"));
cabinetType.set (0);
}
DspModulePluginDemoAudioProcessor::~DspModulePluginDemoAudioProcessor()
{
}
//==============================================================================
bool DspModulePluginDemoAudioProcessor::isBusesLayoutSupported (const BusesLayout& layouts) const
{
// This is the place where you check if the layout is supported.
// In this template code we only support mono or stereo.
if (layouts.getMainOutputChannelSet() != AudioChannelSet::mono() && layouts.getMainOutputChannelSet() != AudioChannelSet::stereo())
return false;
// This checks if the input layout matches the output layout
if (layouts.getMainOutputChannelSet() != layouts.getMainInputChannelSet())
return false;
return true;
}
void DspModulePluginDemoAudioProcessor::prepareToPlay (double sampleRate, int samplesPerBlock)
{
auto channels = static_cast<uint32> (jmin (getMainBusNumInputChannels(), getMainBusNumOutputChannels()));
dsp::ProcessSpec spec { sampleRate, static_cast<uint32> (samplesPerBlock), channels };
lowPassFilter.prepare (spec);
highPassFilter.prepare (spec);
inputVolume.prepare (spec);
outputVolume.prepare (spec);
convolution.prepare (spec);
cabinetType.set (-1);
oversampling->initProcessing (static_cast<size_t> (samplesPerBlock));
updateParameters();
reset();
}
void DspModulePluginDemoAudioProcessor::reset()
{
lowPassFilter.reset();
highPassFilter.reset();
convolution.reset();
oversampling->reset();
}
void DspModulePluginDemoAudioProcessor::releaseResources()
{
}
void DspModulePluginDemoAudioProcessor::process (dsp::ProcessContextReplacing<float> context) noexcept
{
ScopedNoDenormals noDenormals;
// Input volume applied with a LinearSmoothedValue
inputVolume.process (context);
// Pre-highpass filtering, very useful for distortion audio effects
// Note : try frequencies around 700 Hz
highPassFilter.process (context);
// Upsampling
dsp::AudioBlock<float> oversampledBlock;
setLatencySamples (audioCurrentlyOversampled ? roundToInt (oversampling->getLatencyInSamples()) : 0);
if (audioCurrentlyOversampled)
oversampledBlock = oversampling->processSamplesUp (context.getInputBlock());
auto waveshaperContext = audioCurrentlyOversampled ? dsp::ProcessContextReplacing<float> (oversampledBlock)
: context;
// Waveshaper processing, for distortion generation, thanks to the input gain
// The fast tanh can be used instead of std::tanh to reduce the CPU load
auto waveshaperIndex = waveshaperParam->getIndex();
if (isPositiveAndBelow (waveshaperIndex, numWaveShapers) )
{
waveShapers[waveshaperIndex].process (waveshaperContext);
if (waveshaperIndex == 1)
clipping.process (waveshaperContext);
waveshaperContext.getOutputBlock() *= 0.7f;
}
// Downsampling
if (audioCurrentlyOversampled)
oversampling->processSamplesDown (context.getOutputBlock());
// Post-lowpass filtering
lowPassFilter.process (context);
// Convolution with the impulse response of a guitar cabinet
auto wasBypassed = context.isBypassed;
context.isBypassed = context.isBypassed || cabinetIsBypassed;
convolution.process (context);
context.isBypassed = wasBypassed;
// Output volume applied with a LinearSmoothedValue
outputVolume.process (context);
}
void DspModulePluginDemoAudioProcessor::processBlock (AudioBuffer<float>& inoutBuffer, MidiBuffer&)
{
auto totalNumInputChannels = getTotalNumInputChannels();
auto totalNumOutputChannels = getTotalNumOutputChannels();
auto numSamples = inoutBuffer.getNumSamples();
for (auto i = jmin (2, totalNumInputChannels); i < totalNumOutputChannels; ++i)
inoutBuffer.clear (i, 0, numSamples);
updateParameters();
dsp::AudioBlock<float> block (inoutBuffer);
if (stereoParam->getIndex() == 1)
{
// Stereo processing mode:
if (block.getNumChannels() > 2)
block = block.getSubsetChannelBlock (0, 2);
process (dsp::ProcessContextReplacing<float> (block));
}
else
{
// Mono processing mode:
auto firstChan = block.getSingleChannelBlock (0);
process (dsp::ProcessContextReplacing<float> (firstChan));
for (size_t chan = 1; chan < block.getNumChannels(); ++chan)
block.getSingleChannelBlock (chan).copy (firstChan);
}
}
//==============================================================================
bool DspModulePluginDemoAudioProcessor::hasEditor() const
{
return true;
}
AudioProcessorEditor* DspModulePluginDemoAudioProcessor::createEditor()
{
return new DspModulePluginDemoAudioProcessorEditor (*this);
}
//==============================================================================
bool DspModulePluginDemoAudioProcessor::acceptsMidi() const
{
#if JucePlugin_WantsMidiInput
return true;
#else
return false;
#endif
}
bool DspModulePluginDemoAudioProcessor::producesMidi() const
{
#if JucePlugin_ProducesMidiOutput
return true;
#else
return false;
#endif
}
//==============================================================================
void DspModulePluginDemoAudioProcessor::updateParameters()
{
auto newOversampling = oversamplingParam->get();
if (newOversampling != audioCurrentlyOversampled)
{
audioCurrentlyOversampled = newOversampling;
oversampling->reset();
}
//==============================================================================
auto inputdB = Decibels::decibelsToGain (inputVolumeParam->get());
auto outputdB = Decibels::decibelsToGain (outputVolumeParam->get());
if (inputVolume.getGainLinear() != inputdB) inputVolume.setGainLinear (inputdB);
if (outputVolume.getGainLinear() != outputdB) outputVolume.setGainLinear (outputdB);
auto newSlopeType = slopeParam->getIndex();
if (newSlopeType == 0)
{
*lowPassFilter.state = *dsp::IIR::Coefficients<float>::makeFirstOrderLowPass (getSampleRate(), lowPassFilterFreqParam->get());
*highPassFilter.state = *dsp::IIR::Coefficients<float>::makeFirstOrderHighPass (getSampleRate(), highPassFilterFreqParam->get());
}
else
{
*lowPassFilter.state = *dsp::IIR::Coefficients<float>::makeLowPass (getSampleRate(), lowPassFilterFreqParam->get());
*highPassFilter.state = *dsp::IIR::Coefficients<float>::makeHighPass (getSampleRate(), highPassFilterFreqParam->get());
}
//==============================================================================
auto type = cabinetTypeParam->getIndex();
auto currentType = cabinetType.get();
if (type != currentType)
{
cabinetType.set(type);
auto maxSize = static_cast<size_t> (roundToInt (getSampleRate() * (8192.0 / 44100.0)));
if (type == 0)
convolution.loadImpulseResponse (BinaryData::Impulse1_wav, BinaryData::Impulse1_wavSize, false, true, maxSize);
else
convolution.loadImpulseResponse (BinaryData::Impulse2_wav, BinaryData::Impulse2_wavSize, false, true, maxSize);
}
cabinetIsBypassed = ! cabinetSimParam->get();
}
//==============================================================================
// This creates new instances of the plugin..
AudioProcessor* JUCE_CALLTYPE createPluginFilter()
{
return new DspModulePluginDemoAudioProcessor();
}