1
0
Fork 0
mirror of https://github.com/juce-framework/JUCE.git synced 2026-01-10 23:44:24 +00:00
JUCE/modules/juce_audio_basics/utilities/juce_GenericInterpolator.h
2024-04-16 11:39:35 +01:00

398 lines
16 KiB
C++

/*
==============================================================================
This file is part of the JUCE framework.
Copyright (c) Raw Material Software Limited
JUCE is an open source framework subject to commercial or open source
licensing.
By downloading, installing, or using the JUCE framework, or combining the
JUCE framework with any other source code, object code, content or any other
copyrightable work, you agree to the terms of the JUCE End User Licence
Agreement, and all incorporated terms including the JUCE Privacy Policy and
the JUCE Website Terms of Service, as applicable, which will bind you. If you
do not agree to the terms of these agreements, we will not license the JUCE
framework to you, and you must discontinue the installation or download
process and cease use of the JUCE framework.
JUCE End User Licence Agreement: https://juce.com/legal/juce-8-licence/
JUCE Privacy Policy: https://juce.com/juce-privacy-policy
JUCE Website Terms of Service: https://juce.com/juce-website-terms-of-service/
Or:
You may also use this code under the terms of the AGPLv3:
https://www.gnu.org/licenses/agpl-3.0.en.html
THE JUCE FRAMEWORK IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL
WARRANTIES, WHETHER EXPRESSED OR IMPLIED, INCLUDING WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED.
==============================================================================
*/
namespace juce
{
/**
An interpolator base class for resampling streams of floats.
Note that the resamplers are stateful, so when there's a break in the continuity
of the input stream you're feeding it, you should call reset() before feeding
it any new data. And like with any other stateful filter, if you're resampling
multiple channels, make sure each one uses its own interpolator object.
@see LagrangeInterpolator, CatmullRomInterpolator, WindowedSincInterpolator,
LinearInterpolator, ZeroOrderHoldInterpolator
@tags{Audio}
*/
template <class InterpolatorTraits, int memorySize>
class JUCE_API GenericInterpolator
{
static auto processReplacingCallback()
{
return [] (auto, auto newValue) { return newValue; };
}
static auto processAddingCallback (float gain)
{
return [gain] (auto oldValue, auto newValue) { return oldValue + gain * newValue; };
}
public:
GenericInterpolator() noexcept { reset(); }
GenericInterpolator (GenericInterpolator&&) noexcept = default;
GenericInterpolator& operator= (GenericInterpolator&&) noexcept = default;
/** Returns the latency of the interpolation algorithm in isolation.
In the context of resampling the total latency of a process using
the interpolator is the base latency divided by the speed ratio.
*/
static constexpr float getBaseLatency() noexcept
{
return InterpolatorTraits::algorithmicLatency;
}
/** Resets the state of the interpolator.
Call this when there's a break in the continuity of the input data stream.
*/
void reset() noexcept
{
indexBuffer = 0;
subSamplePos = 1.0;
std::fill (std::begin (lastInputSamples), std::end (lastInputSamples), 0.0f);
}
/** Resamples a stream of samples.
@param speedRatio the number of input samples to use for each output sample
@param inputSamples the source data to read from. This must contain at
least (speedRatio * numOutputSamplesToProduce) samples.
@param outputSamples the buffer to write the results into
@param numOutputSamplesToProduce the number of output samples that should be created
@returns the actual number of input samples that were used
*/
int process (double speedRatio,
const float* inputSamples,
float* outputSamples,
int numOutputSamplesToProduce) noexcept
{
return interpolateImpl (speedRatio,
inputSamples,
outputSamples,
numOutputSamplesToProduce,
processReplacingCallback());
}
/** Resamples a stream of samples.
@param speedRatio the number of input samples to use for each output sample
@param inputSamples the source data to read from. This must contain at
least (speedRatio * numOutputSamplesToProduce) samples.
@param outputSamples the buffer to write the results into
@param numOutputSamplesToProduce the number of output samples that should be created
@param numInputSamplesAvailable the number of available input samples. If it needs more samples
than available, it either wraps back for wrapAround samples, or
it feeds zeroes
@param wrapAround if the stream exceeds available samples, it wraps back for
wrapAround samples. If wrapAround is set to 0, it will feed zeroes.
@returns the actual number of input samples that were used
*/
int process (double speedRatio,
const float* inputSamples,
float* outputSamples,
int numOutputSamplesToProduce,
int numInputSamplesAvailable,
int wrapAround) noexcept
{
return interpolateImpl (speedRatio,
inputSamples,
outputSamples,
numOutputSamplesToProduce,
numInputSamplesAvailable,
wrapAround,
processReplacingCallback());
}
/** Resamples a stream of samples, adding the results to the output data
with a gain.
@param speedRatio the number of input samples to use for each output sample
@param inputSamples the source data to read from. This must contain at
least (speedRatio * numOutputSamplesToProduce) samples.
@param outputSamples the buffer to write the results to - the result values will be added
to any pre-existing data in this buffer after being multiplied by
the gain factor
@param numOutputSamplesToProduce the number of output samples that should be created
@param gain a gain factor to multiply the resulting samples by before
adding them to the destination buffer
@returns the actual number of input samples that were used
*/
int processAdding (double speedRatio,
const float* inputSamples,
float* outputSamples,
int numOutputSamplesToProduce,
float gain) noexcept
{
return interpolateImpl (speedRatio,
inputSamples,
outputSamples,
numOutputSamplesToProduce,
processAddingCallback (gain));
}
/** Resamples a stream of samples, adding the results to the output data
with a gain.
@param speedRatio the number of input samples to use for each output sample
@param inputSamples the source data to read from. This must contain at
least (speedRatio * numOutputSamplesToProduce) samples.
@param outputSamples the buffer to write the results to - the result values will be added
to any pre-existing data in this buffer after being multiplied by
the gain factor
@param numOutputSamplesToProduce the number of output samples that should be created
@param numInputSamplesAvailable the number of available input samples. If it needs more samples
than available, it either wraps back for wrapAround samples, or
it feeds zeroes
@param wrapAround if the stream exceeds available samples, it wraps back for
wrapAround samples. If wrapAround is set to 0, it will feed zeroes.
@param gain a gain factor to multiply the resulting samples by before
adding them to the destination buffer
@returns the actual number of input samples that were used
*/
int processAdding (double speedRatio,
const float* inputSamples,
float* outputSamples,
int numOutputSamplesToProduce,
int numInputSamplesAvailable,
int wrapAround,
float gain) noexcept
{
return interpolateImpl (speedRatio,
inputSamples,
outputSamples,
numOutputSamplesToProduce,
numInputSamplesAvailable,
wrapAround,
processAddingCallback (gain));
}
private:
//==============================================================================
forcedinline void pushInterpolationSample (float newValue) noexcept
{
lastInputSamples[indexBuffer] = newValue;
if (++indexBuffer == memorySize)
indexBuffer = 0;
}
forcedinline void pushInterpolationSamples (const float* input,
int numOutputSamplesToProduce) noexcept
{
if (numOutputSamplesToProduce >= memorySize)
{
const auto* const offsetInput = input + (numOutputSamplesToProduce - memorySize);
for (int i = 0; i < memorySize; ++i)
pushInterpolationSample (offsetInput[i]);
}
else
{
for (int i = 0; i < numOutputSamplesToProduce; ++i)
pushInterpolationSample (input[i]);
}
}
forcedinline void pushInterpolationSamples (const float* input,
int numOutputSamplesToProduce,
int numInputSamplesAvailable,
int wrapAround) noexcept
{
if (numOutputSamplesToProduce >= memorySize)
{
if (numInputSamplesAvailable >= memorySize)
{
pushInterpolationSamples (input,
numOutputSamplesToProduce);
}
else
{
pushInterpolationSamples (input + ((numOutputSamplesToProduce - numInputSamplesAvailable) - 1),
numInputSamplesAvailable);
if (wrapAround > 0)
{
numOutputSamplesToProduce -= wrapAround;
pushInterpolationSamples (input + ((numOutputSamplesToProduce - (memorySize - numInputSamplesAvailable)) - 1),
memorySize - numInputSamplesAvailable);
}
else
{
for (int i = numInputSamplesAvailable; i < memorySize; ++i)
pushInterpolationSample (0.0f);
}
}
}
else
{
if (numOutputSamplesToProduce > numInputSamplesAvailable)
{
for (int i = 0; i < numInputSamplesAvailable; ++i)
pushInterpolationSample (input[i]);
const auto extraSamples = numOutputSamplesToProduce - numInputSamplesAvailable;
if (wrapAround > 0)
{
const auto* const offsetInput = input + (numInputSamplesAvailable - wrapAround);
for (int i = 0; i < extraSamples; ++i)
pushInterpolationSample (offsetInput[i]);
}
else
{
for (int i = 0; i < extraSamples; ++i)
pushInterpolationSample (0.0f);
}
}
else
{
for (int i = 0; i < numOutputSamplesToProduce; ++i)
pushInterpolationSample (input[i]);
}
}
}
//==============================================================================
template <typename Process>
int interpolateImpl (double speedRatio,
const float* input,
float* output,
int numOutputSamplesToProduce,
int numInputSamplesAvailable,
int wrap,
Process process)
{
auto originalIn = input;
bool exceeded = false;
const auto pushSample = [&]
{
if (exceeded)
{
pushInterpolationSample (0.0);
}
else
{
pushInterpolationSample (*input++);
if (--numInputSamplesAvailable <= 0)
{
if (wrap > 0)
{
input -= wrap;
numInputSamplesAvailable += wrap;
}
else
{
exceeded = true;
}
}
}
};
interpolateImpl (speedRatio,
output,
numOutputSamplesToProduce,
process,
pushSample);
if (wrap == 0)
return (int) (input - originalIn);
return ((int) (input - originalIn) + wrap) % wrap;
}
template <typename Process>
int interpolateImpl (double speedRatio,
const float* input,
float* output,
int numOutputSamplesToProduce,
Process process)
{
int numUsed = 0;
interpolateImpl (speedRatio,
output,
numOutputSamplesToProduce,
process,
[this, input, &numUsed] { pushInterpolationSample (input[numUsed++]); });
return numUsed;
}
template <typename Process, typename PushSample>
void interpolateImpl (double speedRatio,
float* output,
int numOutputSamplesToProduce,
Process process,
PushSample pushSample)
{
auto pos = subSamplePos;
for (auto i = 0; i < numOutputSamplesToProduce; ++i)
{
while (pos >= 1.0)
{
pushSample();
pos -= 1.0;
}
*output = process (*output, InterpolatorTraits::valueAtOffset (lastInputSamples, (float) pos, indexBuffer));
++output;
pos += speedRatio;
}
subSamplePos = pos;
}
//==============================================================================
float lastInputSamples[(size_t) memorySize];
double subSamplePos = 1.0;
int indexBuffer = 0;
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (GenericInterpolator)
};
} // namespace juce