1
0
Fork 0
mirror of https://github.com/juce-framework/JUCE.git synced 2026-01-09 23:34:20 +00:00
JUCE/modules/juce_graphics/geometry/juce_RectangleList.h

674 lines
21 KiB
C++

/*
==============================================================================
This file is part of the JUCE framework.
Copyright (c) Raw Material Software Limited
JUCE is an open source framework subject to commercial or open source
licensing.
By downloading, installing, or using the JUCE framework, or combining the
JUCE framework with any other source code, object code, content or any other
copyrightable work, you agree to the terms of the JUCE End User Licence
Agreement, and all incorporated terms including the JUCE Privacy Policy and
the JUCE Website Terms of Service, as applicable, which will bind you. If you
do not agree to the terms of these agreements, we will not license the JUCE
framework to you, and you must discontinue the installation or download
process and cease use of the JUCE framework.
JUCE End User Licence Agreement: https://juce.com/legal/juce-8-licence/
JUCE Privacy Policy: https://juce.com/juce-privacy-policy
JUCE Website Terms of Service: https://juce.com/juce-website-terms-of-service/
Or:
You may also use this code under the terms of the AGPLv3:
https://www.gnu.org/licenses/agpl-3.0.en.html
THE JUCE FRAMEWORK IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL
WARRANTIES, WHETHER EXPRESSED OR IMPLIED, INCLUDING WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Maintains a set of rectangles as a complex region.
This class allows a set of rectangles to be treated as a solid shape, and can
add and remove rectangular sections of it, and simplify overlapping or
adjacent rectangles.
@see Rectangle
@tags{Graphics}
*/
template <typename ValueType>
class RectangleList final
{
public:
using RectangleType = Rectangle<ValueType>;
//==============================================================================
/** Creates an empty RectangleList */
RectangleList() = default;
/** Creates a copy of another list */
RectangleList (const RectangleList& other) : rects (other.rects)
{
}
/** Creates a list containing just one rectangle. */
RectangleList (RectangleType rect)
{
addWithoutMerging (rect);
}
/** Copies this list from another one. */
RectangleList& operator= (const RectangleList& other)
{
rects = other.rects;
return *this;
}
/** Move constructor */
RectangleList (RectangleList&& other) noexcept
: rects (std::move (other.rects))
{
}
/** Move assignment operator */
RectangleList& operator= (RectangleList&& other) noexcept
{
rects = std::move (other.rects);
return *this;
}
//==============================================================================
/** Returns true if the region is empty. */
bool isEmpty() const noexcept { return rects.isEmpty(); }
/** Returns the number of rectangles in the list. */
int getNumRectangles() const noexcept { return rects.size(); }
/** Returns one of the rectangles at a particular index.
@returns the rectangle at the index, or an empty rectangle if the index is out-of-range.
*/
RectangleType getRectangle (int index) const noexcept { return rects[index]; }
//==============================================================================
/** Removes all rectangles to leave an empty region. */
void clear()
{
rects.clearQuick();
}
/** Merges a new rectangle into the list.
The rectangle being added will first be clipped to remove any parts of it
that overlap existing rectangles in the list, and adjacent rectangles will be
merged into it.
The rectangle can have any size and may be empty, but if it's floating point
then it's expected to not contain any INF values.
*/
void add (RectangleType rect)
{
jassert (rect.isFinite()); // You must provide a valid rectangle to this method!
if (! rect.isEmpty())
{
if (isEmpty())
{
rects.add (rect);
}
else
{
bool anyOverlaps = false;
for (int j = rects.size(); --j >= 0;)
{
auto& ourRect = rects.getReference (j);
if (rect.intersects (ourRect))
{
if (rect.contains (ourRect))
rects.remove (j);
else if (! ourRect.reduceIfPartlyContainedIn (rect))
anyOverlaps = true;
}
}
if (anyOverlaps && ! isEmpty())
{
RectangleList r (rect);
for (auto& ourRect : rects)
{
if (rect.intersects (ourRect))
{
r.subtract (ourRect);
if (r.isEmpty())
return;
}
}
rects.addArray (r.rects);
}
else
{
rects.add (rect);
}
}
}
}
/** Merges a new rectangle into the list.
The rectangle being added will first be clipped to remove any parts of it
that overlap existing rectangles in the list.
*/
void add (ValueType x, ValueType y, ValueType width, ValueType height)
{
add (RectangleType (x, y, width, height));
}
/** Dumbly adds a rectangle to the list without checking for overlaps.
This simply adds the rectangle to the end, it doesn't merge it or remove
any overlapping bits.
The rectangle can have any size and may be empty, but if it's floating point
then it's expected to not contain any INF values.
*/
void addWithoutMerging (RectangleType rect)
{
jassert (rect.isFinite()); // You must provide a valid rectangle to this method!
if (! rect.isEmpty())
rects.add (rect);
}
/** Merges another rectangle list into this one.
Any overlaps between the two lists will be clipped, so that the result is
the union of both lists.
*/
void add (const RectangleList& other)
{
for (auto& r : other)
add (r);
}
/** Removes a rectangular region from the list.
Any rectangles in the list which overlap this will be clipped and subdivided
if necessary.
*/
void subtract (const RectangleType rect)
{
using PointType = Point<ValueType>;
const auto numRects = rects.size();
if (numRects == 0)
return;
struct AABB
{
AABB() = default;
AABB (const RectangleType& r) : tl (r.getTopLeft()), br (r.getBottomRight()) {}
AABB (PointType a, PointType b) : tl (a), br (b) {}
operator RectangleType() const { return RectangleType { tl, br }; }
bool completelyOutside (const AABB& other) const
{
return other.br.x <= tl.x || br.x <= other.tl.x || other.br.y <= tl.y || br.y <= other.tl.y;
}
PointType tl, br;
};
Array<AABB> aabbs;
aabbs.resize (rects.size());
std::copy (rects.begin(), rects.end(), aabbs.begin());
const AABB aabb { rect };
for (int i = numRects; --i >= 0;)
{
auto& rRef = aabbs.getReference (i);;
const auto r = rRef;
if (r.completelyOutside (aabb))
continue;
if (r.tl.x < aabb.tl.x && aabb.tl.x < r.br.x)
{
if (aabb.tl.y <= r.tl.y && r.br.y <= aabb.br.y && r.br.x <= aabb.br.x)
{
rRef.br.x = aabb.tl.x;
}
else
{
rRef.tl.x = aabb.tl.x;
aabbs.insert (++i, { r.tl, { aabb.tl.x, r.br.y } });
++i;
}
}
else if (r.tl.x < aabb.br.x && aabb.br.x < r.br.x)
{
rRef.tl.x = aabb.br.x;
if (r.tl.y < aabb.tl.y || aabb.br.y < r.br.y || r.tl.x < aabb.tl.x)
{
aabbs.insert (++i, { r.tl, { aabb.br.x, r.br.y } });
++i;
}
}
else if (r.tl.y < aabb.tl.y && aabb.tl.y < r.br.y)
{
if (aabb.tl.x <= r.tl.x && r.br.x <= aabb.br.x && r.br.y <= aabb.br.y)
{
rRef.br.y = aabb.tl.y;
}
else
{
rRef.tl.y = aabb.tl.y;
aabbs.insert (++i, { r.tl, { r.br.x, aabb.tl.y } });
++i;
}
}
else if (r.tl.y < aabb.br.y && aabb.br.y < r.br.y)
{
rRef.tl.y = aabb.br.y;
if (r.tl.x < aabb.tl.x || aabb.br.x < r.br.x || r.tl.y < aabb.tl.y)
{
aabbs.insert (++i, { r.tl, { r.br.x, aabb.br.y } });
++i;
}
}
else
{
aabbs.remove (i);
}
}
rects.resize (aabbs.size());
std::copy (aabbs.begin(), aabbs.end(), rects.begin());
}
/** Removes all areas in another RectangleList from this one.
Any rectangles in the list which overlap this will be clipped and subdivided
if necessary.
@returns true if the resulting list is non-empty.
*/
bool subtract (const RectangleList& otherList)
{
for (auto& r : otherList)
{
if (isEmpty())
return false;
subtract (r);
}
return ! isEmpty();
}
/** Removes any areas of the region that lie outside a given rectangle.
Any rectangles in the list which overlap this will be clipped and subdivided
if necessary.
Returns true if the resulting region is not empty, false if it is empty.
@see getIntersectionWith
*/
bool clipTo (RectangleType rect)
{
jassert (rect.isFinite()); // You must provide a valid rectangle to this method!
bool notEmpty = false;
if (rect.isEmpty())
{
clear();
}
else
{
for (int i = rects.size(); --i >= 0;)
{
auto& r = rects.getReference (i);
if (! rect.intersectRectangle (r))
rects.remove (i);
else
notEmpty = true;
}
}
return notEmpty;
}
/** Removes any areas of the region that lie outside a given rectangle list.
Any rectangles in this object which overlap the specified list will be clipped
and subdivided if necessary.
Returns true if the resulting region is not empty, false if it is empty.
@see getIntersectionWith
*/
template <typename OtherValueType>
bool clipTo (const RectangleList<OtherValueType>& other)
{
if (isEmpty())
return false;
RectangleList result;
for (auto& rect : rects)
{
for (auto& r : other)
{
auto clipped = r.template toType<ValueType>();
if (rect.intersectRectangle (clipped))
result.rects.add (clipped);
}
}
swapWith (result);
return ! isEmpty();
}
/** Creates a region which is the result of clipping this one to a given rectangle.
Unlike the other clipTo method, this one doesn't affect this object - it puts the
resulting region into the list whose reference is passed-in.
Returns true if the resulting region is not empty, false if it is empty.
@see clipTo
*/
bool getIntersectionWith (RectangleType rect, RectangleList& destRegion) const
{
jassert (rect.isFinite()); // You must provide a valid rectangle to this method!
destRegion.clear();
if (! rect.isEmpty())
for (auto r : rects)
if (rect.intersectRectangle (r))
destRegion.rects.add (r);
return ! destRegion.isEmpty();
}
/** Swaps the contents of this and another list.
This swaps their internal pointers, so is hugely faster than using copy-by-value
to swap them.
*/
void swapWith (RectangleList& otherList) noexcept
{
rects.swapWith (otherList.rects);
}
//==============================================================================
/** Checks whether the region contains a given point.
@returns true if the point lies within one of the rectangles in the list
*/
bool containsPoint (Point<ValueType> point) const noexcept
{
for (auto& r : rects)
if (r.contains (point))
return true;
return false;
}
/** Checks whether the region contains a given point.
@returns true if the point lies within one of the rectangles in the list
*/
bool containsPoint (ValueType x, ValueType y) const noexcept
{
return containsPoint (Point<ValueType> (x, y));
}
/** Checks whether the region contains the whole of a given rectangle.
@returns true all parts of the rectangle passed in lie within the region
defined by this object
@see intersectsRectangle, containsPoint
*/
bool containsRectangle (RectangleType rectangleToCheck) const
{
if (rects.size() > 1)
{
RectangleList r (rectangleToCheck);
for (auto& rect : rects)
{
r.subtract (rect);
if (r.isEmpty())
return true;
}
}
else if (! isEmpty())
{
return rects.getReference (0).contains (rectangleToCheck);
}
return false;
}
/** Checks whether the region contains any part of a given rectangle.
@returns true if any part of the rectangle passed in lies within the region
defined by this object
@see containsRectangle
*/
bool intersectsRectangle (RectangleType rectangleToCheck) const noexcept
{
for (auto& r : rects)
if (r.intersects (rectangleToCheck))
return true;
return false;
}
/** Checks whether this region intersects any part of another one.
@see intersectsRectangle
*/
bool intersects (const RectangleList& other) const noexcept
{
for (auto& r : rects)
if (other.intersectsRectangle (r))
return true;
return false;
}
//==============================================================================
/** Returns the smallest rectangle that can enclose the whole of this region. */
RectangleType getBounds() const noexcept
{
if (isEmpty())
return {};
auto& r = rects.getReference (0);
if (rects.size() == 1)
return r;
auto minX = r.getX();
auto minY = r.getY();
auto maxX = minX + r.getWidth();
auto maxY = minY + r.getHeight();
for (int i = rects.size(); --i > 0;)
{
auto& r2 = rects.getReference (i);
minX = jmin (minX, r2.getX());
minY = jmin (minY, r2.getY());
maxX = jmax (maxX, r2.getRight());
maxY = jmax (maxY, r2.getBottom());
}
return { minX, minY, maxX - minX, maxY - minY };
}
/** Optimises the list into a minimum number of constituent rectangles.
This will try to combine any adjacent rectangles into larger ones where
possible, to simplify lists that might have been fragmented by repeated
add/subtract calls.
*/
void consolidate()
{
for (int i = 0; i < rects.size() - 1; ++i)
{
auto& r = rects.getReference (i);
auto rx1 = r.getX();
auto ry1 = r.getY();
auto rx2 = rx1 + r.getWidth();
auto ry2 = ry1 + r.getHeight();
for (int j = rects.size(); --j > i;)
{
auto& r2 = rects.getReference (j);
auto jrx1 = r2.getX();
auto jry1 = r2.getY();
auto jrx2 = jrx1 + r2.getWidth();
auto jry2 = jry1 + r2.getHeight();
// if the vertical edges of any blocks are touching and their horizontals don't
// line up, split them horizontally..
if (jrx1 == rx2 || jrx2 == rx1)
{
if (jry1 > ry1 && jry1 < ry2)
{
r.setHeight (jry1 - ry1);
rects.add (RectangleType (rx1, jry1, rx2 - rx1, ry2 - jry1));
i = -1;
break;
}
if (jry2 > ry1 && jry2 < ry2)
{
r.setHeight (jry2 - ry1);
rects.add (RectangleType (rx1, jry2, rx2 - rx1, ry2 - jry2));
i = -1;
break;
}
else if (ry1 > jry1 && ry1 < jry2)
{
r2.setHeight (ry1 - jry1);
rects.add (RectangleType (jrx1, ry1, jrx2 - jrx1, jry2 - ry1));
i = -1;
break;
}
else if (ry2 > jry1 && ry2 < jry2)
{
r2.setHeight (ry2 - jry1);
rects.add (RectangleType (jrx1, ry2, jrx2 - jrx1, jry2 - ry2));
i = -1;
break;
}
}
}
}
for (int i = 0; i < rects.size() - 1; ++i)
{
auto& r = rects.getReference (i);
for (int j = rects.size(); --j > i;)
{
if (r.enlargeIfAdjacent (rects.getReference (j)))
{
rects.remove (j);
i = -1;
break;
}
}
}
}
/** Adds an x and y value to all the coordinates. */
void offsetAll (Point<ValueType> offset) noexcept
{
for (auto& r : rects)
r += offset;
}
/** Adds an x and y value to all the coordinates. */
void offsetAll (ValueType dx, ValueType dy) noexcept
{
offsetAll (Point<ValueType> (dx, dy));
}
/** Scales all the coordinates. */
template <typename ScaleType>
void scaleAll (ScaleType scaleFactor) noexcept
{
for (auto& r : rects)
r *= scaleFactor;
}
/** Applies a transform to all the rectangles.
Obviously this will create a mess if the transform involves any
rotation or skewing.
*/
void transformAll (const AffineTransform& transform) noexcept
{
for (auto& r : rects)
r = r.transformedBy (transform);
}
//==============================================================================
/** Creates a Path object to represent this region. */
Path toPath() const
{
Path p;
for (auto& r : rects)
p.addRectangle (r);
return p;
}
//==============================================================================
/** Standard method for iterating the rectangles in the list. */
const RectangleType* begin() const noexcept { return rects.begin(); }
/** Standard method for iterating the rectangles in the list. */
const RectangleType* end() const noexcept { return rects.end(); }
/** Increases the internal storage to hold a minimum number of rectangles.
Calling this before adding a large number of rectangles means that
the array won't have to keep dynamically resizing itself as the elements
are added, and it'll therefore be more efficient.
@see Array::ensureStorageAllocated
*/
void ensureStorageAllocated (int minNumRectangles)
{
rects.ensureStorageAllocated (minNumRectangles);
}
private:
//==============================================================================
Array<RectangleType> rects;
};
} // namespace juce