mirror of
https://github.com/juce-framework/JUCE.git
synced 2026-01-09 23:34:20 +00:00
272 lines
7.8 KiB
C++
272 lines
7.8 KiB
C++
// Copyright 2014 The Chromium Authors
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "cubic_bezier.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
namespace gfx {
|
|
|
|
namespace {
|
|
|
|
const int kMaxNewtonIterations = 4;
|
|
|
|
} // namespace
|
|
|
|
static const double kBezierEpsilon = 1e-7;
|
|
|
|
double CubicBezier::ToFinite(double value) {
|
|
// TODO(crbug.com/1275541): We can clamp this in numeric operation helper
|
|
// function like ClampedNumeric.
|
|
if (std::isinf(value)) {
|
|
if (value > 0)
|
|
return std::numeric_limits<double>::max();
|
|
return std::numeric_limits<double>::lowest();
|
|
}
|
|
return value;
|
|
}
|
|
|
|
CubicBezier::CubicBezier(double p1x, double p1y, double p2x, double p2y) {
|
|
InitCoefficients(p1x, p1y, p2x, p2y);
|
|
InitGradients(p1x, p1y, p2x, p2y);
|
|
InitRange(p1y, p2y);
|
|
InitSpline();
|
|
}
|
|
|
|
CubicBezier::CubicBezier(const CubicBezier& other) = default;
|
|
|
|
void CubicBezier::InitCoefficients(double p1x,
|
|
double p1y,
|
|
double p2x,
|
|
double p2y) {
|
|
// Calculate the polynomial coefficients, implicit first and last control
|
|
// points are (0,0) and (1,1).
|
|
cx_ = 3.0 * p1x;
|
|
bx_ = 3.0 * (p2x - p1x) - cx_;
|
|
ax_ = 1.0 - cx_ - bx_;
|
|
|
|
cy_ = ToFinite(3.0 * p1y);
|
|
by_ = ToFinite(3.0 * (p2y - p1y) - cy_);
|
|
ay_ = ToFinite(1.0 - cy_ - by_);
|
|
|
|
#ifndef NDEBUG
|
|
// Bezier curves with x-coordinates outside the range [0,1] for internal
|
|
// control points may have multiple values for t for a given value of x.
|
|
// In this case, calls to SolveCurveX may produce ambiguous results.
|
|
monotonically_increasing_ = p1x >= 0 && p1x <= 1 && p2x >= 0 && p2x <= 1;
|
|
#endif
|
|
}
|
|
|
|
void CubicBezier::InitGradients(double p1x,
|
|
double p1y,
|
|
double p2x,
|
|
double p2y) {
|
|
// End-point gradients are used to calculate timing function results
|
|
// outside the range [0, 1].
|
|
//
|
|
// There are four possibilities for the gradient at each end:
|
|
// (1) the closest control point is not horizontally coincident with regard to
|
|
// (0, 0) or (1, 1). In this case the line between the end point and
|
|
// the control point is tangent to the bezier at the end point.
|
|
// (2) the closest control point is coincident with the end point. In
|
|
// this case the line between the end point and the far control
|
|
// point is tangent to the bezier at the end point.
|
|
// (3) both internal control points are coincident with an endpoint. There
|
|
// are two special case that fall into this category:
|
|
// CubicBezier(0, 0, 0, 0) and CubicBezier(1, 1, 1, 1). Both are
|
|
// equivalent to linear.
|
|
// (4) the closest control point is horizontally coincident with the end
|
|
// point, but vertically distinct. In this case the gradient at the
|
|
// end point is Infinite. However, this causes issues when
|
|
// interpolating. As a result, we break down to a simple case of
|
|
// 0 gradient under these conditions.
|
|
|
|
if (p1x > 0)
|
|
start_gradient_ = p1y / p1x;
|
|
else if (!p1y && p2x > 0)
|
|
start_gradient_ = p2y / p2x;
|
|
else if (!p1y && !p2y)
|
|
start_gradient_ = 1;
|
|
else
|
|
start_gradient_ = 0;
|
|
|
|
if (p2x < 1)
|
|
end_gradient_ = (p2y - 1) / (p2x - 1);
|
|
else if (p2y == 1 && p1x < 1)
|
|
end_gradient_ = (p1y - 1) / (p1x - 1);
|
|
else if (p2y == 1 && p1y == 1)
|
|
end_gradient_ = 1;
|
|
else
|
|
end_gradient_ = 0;
|
|
}
|
|
|
|
// This works by taking taking the derivative of the cubic bezier, on the y
|
|
// axis. We can then solve for where the derivative is zero to find the min
|
|
// and max distance along the line. We the have to solve those in terms of time
|
|
// rather than distance on the x-axis
|
|
void CubicBezier::InitRange(double p1y, double p2y) {
|
|
range_min_ = 0;
|
|
range_max_ = 1;
|
|
if (0 <= p1y && p1y < 1 && 0 <= p2y && p2y <= 1)
|
|
return;
|
|
|
|
const double epsilon = kBezierEpsilon;
|
|
|
|
// Represent the function's derivative in the form at^2 + bt + c
|
|
// as in sampleCurveDerivativeY.
|
|
// (Technically this is (dy/dt)*(1/3), which is suitable for finding zeros
|
|
// but does not actually give the slope of the curve.)
|
|
const double a = 3.0 * ay_;
|
|
const double b = 2.0 * by_;
|
|
const double c = cy_;
|
|
|
|
// Check if the derivative is constant.
|
|
if (std::abs(a) < epsilon && std::abs(b) < epsilon)
|
|
return;
|
|
|
|
// Zeros of the function's derivative.
|
|
double t1 = 0;
|
|
double t2 = 0;
|
|
|
|
if (std::abs(a) < epsilon) {
|
|
// The function's derivative is linear.
|
|
t1 = -c / b;
|
|
} else {
|
|
// The function's derivative is a quadratic. We find the zeros of this
|
|
// quadratic using the quadratic formula.
|
|
double discriminant = b * b - 4 * a * c;
|
|
if (discriminant < 0)
|
|
return;
|
|
double discriminant_sqrt = sqrt(discriminant);
|
|
t1 = (-b + discriminant_sqrt) / (2 * a);
|
|
t2 = (-b - discriminant_sqrt) / (2 * a);
|
|
}
|
|
|
|
double sol1 = 0;
|
|
double sol2 = 0;
|
|
|
|
// If the solution is in the range [0,1] then we include it, otherwise we
|
|
// ignore it.
|
|
|
|
// An interesting fact about these beziers is that they are only
|
|
// actually evaluated in [0,1]. After that we take the tangent at that point
|
|
// and linearly project it out.
|
|
if (0 < t1 && t1 < 1)
|
|
sol1 = SampleCurveY(t1);
|
|
|
|
if (0 < t2 && t2 < 1)
|
|
sol2 = SampleCurveY(t2);
|
|
|
|
range_min_ = std::min({range_min_, sol1, sol2});
|
|
range_max_ = std::max({range_max_, sol1, sol2});
|
|
}
|
|
|
|
void CubicBezier::InitSpline() {
|
|
double delta_t = 1.0 / (CUBIC_BEZIER_SPLINE_SAMPLES - 1);
|
|
for (int i = 0; i < CUBIC_BEZIER_SPLINE_SAMPLES; i++) {
|
|
spline_samples_[i] = SampleCurveX(i * delta_t);
|
|
}
|
|
}
|
|
|
|
double CubicBezier::GetDefaultEpsilon() {
|
|
return kBezierEpsilon;
|
|
}
|
|
|
|
double CubicBezier::SolveCurveX(double x, double epsilon) const {
|
|
jassert (x >= 0.0);
|
|
jassert (x <= 1.0);
|
|
|
|
double t0;
|
|
double t1;
|
|
double t2 = x;
|
|
double x2;
|
|
double d2;
|
|
int i;
|
|
|
|
#ifndef NDEBUG
|
|
jassert (monotonically_increasing_);
|
|
#endif
|
|
|
|
// Linear interpolation of spline curve for initial guess.
|
|
double delta_t = 1.0 / (CUBIC_BEZIER_SPLINE_SAMPLES - 1);
|
|
for (i = 1; i < CUBIC_BEZIER_SPLINE_SAMPLES; i++) {
|
|
if (x <= spline_samples_[i]) {
|
|
t1 = delta_t * i;
|
|
t0 = t1 - delta_t;
|
|
t2 = t0 + (t1 - t0) * (x - spline_samples_[i - 1]) /
|
|
(spline_samples_[i] - spline_samples_[i - 1]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Perform a few iterations of Newton's method -- normally very fast.
|
|
// See https://en.wikipedia.org/wiki/Newton%27s_method.
|
|
double newton_epsilon = std::min(kBezierEpsilon, epsilon);
|
|
for (i = 0; i < kMaxNewtonIterations; i++) {
|
|
x2 = SampleCurveX(t2) - x;
|
|
if (fabs(x2) < newton_epsilon)
|
|
return t2;
|
|
d2 = SampleCurveDerivativeX(t2);
|
|
if (fabs(d2) < kBezierEpsilon)
|
|
break;
|
|
t2 = t2 - x2 / d2;
|
|
}
|
|
if (fabs(x2) < epsilon)
|
|
return t2;
|
|
|
|
// Fall back to the bisection method for reliability.
|
|
while (t0 < t1) {
|
|
x2 = SampleCurveX(t2);
|
|
if (fabs(x2 - x) < epsilon)
|
|
return t2;
|
|
if (x > x2)
|
|
t0 = t2;
|
|
else
|
|
t1 = t2;
|
|
t2 = (t1 + t0) * .5;
|
|
}
|
|
|
|
// Failure.
|
|
return t2;
|
|
}
|
|
|
|
double CubicBezier::Solve(double x) const {
|
|
return SolveWithEpsilon(x, kBezierEpsilon);
|
|
}
|
|
|
|
double CubicBezier::SlopeWithEpsilon(double x, double epsilon) const {
|
|
x = std::clamp(x, 0.0, 1.0);
|
|
double t = SolveCurveX(x, epsilon);
|
|
double dx = SampleCurveDerivativeX(t);
|
|
double dy = SampleCurveDerivativeY(t);
|
|
// TODO(crbug.com/1275534): We should clamp NaN to a proper value.
|
|
// Please see the issue for detail.
|
|
if (!dx && !dy)
|
|
return 0;
|
|
return ToFinite(dy / dx);
|
|
}
|
|
|
|
double CubicBezier::Slope(double x) const {
|
|
return SlopeWithEpsilon(x, kBezierEpsilon);
|
|
}
|
|
|
|
double CubicBezier::GetX1() const {
|
|
return cx_ / 3.0;
|
|
}
|
|
|
|
double CubicBezier::GetY1() const {
|
|
return cy_ / 3.0;
|
|
}
|
|
|
|
double CubicBezier::GetX2() const {
|
|
return (bx_ + cx_) / 3.0 + GetX1();
|
|
}
|
|
|
|
double CubicBezier::GetY2() const {
|
|
return (by_ + cy_) / 3.0 + GetY1();
|
|
}
|
|
|
|
} // namespace gfx
|