1
0
Fork 0
mirror of https://github.com/juce-framework/JUCE.git synced 2026-01-10 23:44:24 +00:00
JUCE/modules/juce_graphics/contexts/juce_LowLevelGraphicsSoftwareRenderer.cpp

2281 lines
85 KiB
C++

/*
==============================================================================
This file is part of the JUCE library - "Jules' Utility Class Extensions"
Copyright 2004-11 by Raw Material Software Ltd.
------------------------------------------------------------------------------
JUCE can be redistributed and/or modified under the terms of the GNU General
Public License (Version 2), as published by the Free Software Foundation.
A copy of the license is included in the JUCE distribution, or can be found
online at www.gnu.org/licenses.
JUCE is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
------------------------------------------------------------------------------
To release a closed-source product which uses JUCE, commercial licenses are
available: visit www.rawmaterialsoftware.com/juce for more information.
==============================================================================
*/
BEGIN_JUCE_NAMESPACE
#if JUCE_MSVC
#pragma warning (push)
#pragma warning (disable: 4127) // "expression is constant" warning
#if JUCE_DEBUG
#pragma optimize ("t", on) // optimise just this file, to avoid sluggish graphics when debugging
#pragma warning (disable: 4714) // warning about forcedinline methods not being inlined
#endif
#endif
namespace SoftwareRendererClasses
{
//==============================================================================
template <class PixelType, bool replaceExisting = false>
class SolidColourEdgeTableRenderer
{
public:
SolidColourEdgeTableRenderer (const Image::BitmapData& data_, const PixelARGB& colour)
: data (data_),
sourceColour (colour)
{
if (sizeof (PixelType) == 3)
{
areRGBComponentsEqual = sourceColour.getRed() == sourceColour.getGreen()
&& sourceColour.getGreen() == sourceColour.getBlue();
filler[0].set (sourceColour);
filler[1].set (sourceColour);
filler[2].set (sourceColour);
filler[3].set (sourceColour);
}
}
forcedinline void setEdgeTableYPos (const int y) noexcept
{
linePixels = (PixelType*) data.getLinePointer (y);
}
forcedinline void handleEdgeTablePixel (const int x, const int alphaLevel) const noexcept
{
if (replaceExisting)
linePixels[x].set (sourceColour);
else
linePixels[x].blend (sourceColour, (uint32) alphaLevel);
}
forcedinline void handleEdgeTablePixelFull (const int x) const noexcept
{
if (replaceExisting)
linePixels[x].set (sourceColour);
else
linePixels[x].blend (sourceColour);
}
forcedinline void handleEdgeTableLine (const int x, const int width, const int alphaLevel) const noexcept
{
PixelARGB p (sourceColour);
p.multiplyAlpha (alphaLevel);
PixelType* dest = linePixels + x;
if (replaceExisting || p.getAlpha() >= 0xff)
replaceLine (dest, p, width);
else
blendLine (dest, p, width);
}
forcedinline void handleEdgeTableLineFull (const int x, const int width) const noexcept
{
PixelType* dest = linePixels + x;
if (replaceExisting || sourceColour.getAlpha() >= 0xff)
replaceLine (dest, sourceColour, width);
else
blendLine (dest, sourceColour, width);
}
private:
const Image::BitmapData& data;
PixelType* linePixels;
PixelARGB sourceColour;
PixelRGB filler [4];
bool areRGBComponentsEqual;
inline void blendLine (PixelType* dest, const PixelARGB& colour, int width) const noexcept
{
do
{
dest->blend (colour);
++dest;
} while (--width > 0);
}
forcedinline void replaceLine (PixelRGB* dest, const PixelARGB& colour, int width) const noexcept
{
if (areRGBComponentsEqual) // if all the component values are the same, we can cheat..
{
memset (dest, colour.getRed(), (size_t) width * 3);
}
else
{
if (width >> 5)
{
const int* const intFiller = reinterpret_cast<const int*> (filler);
while (width > 8 && (((pointer_sized_int) dest) & 7) != 0)
{
dest->set (colour);
++dest;
--width;
}
while (width > 4)
{
int* d = reinterpret_cast<int*> (dest);
*d++ = intFiller[0];
*d++ = intFiller[1];
*d++ = intFiller[2];
dest = reinterpret_cast<PixelRGB*> (d);
width -= 4;
}
}
while (--width >= 0)
{
dest->set (colour);
++dest;
}
}
}
forcedinline void replaceLine (PixelAlpha* const dest, const PixelARGB& colour, int const width) const noexcept
{
memset (dest, colour.getAlpha(), (size_t) width);
}
forcedinline void replaceLine (PixelARGB* dest, const PixelARGB& colour, int width) const noexcept
{
do
{
dest->set (colour);
++dest;
} while (--width > 0);
}
JUCE_DECLARE_NON_COPYABLE (SolidColourEdgeTableRenderer);
};
//==============================================================================
class LinearGradientPixelGenerator
{
public:
LinearGradientPixelGenerator (const ColourGradient& gradient, const AffineTransform& transform,
const PixelARGB* const lookupTable_, const int numEntries_)
: lookupTable (lookupTable_),
numEntries (numEntries_)
{
jassert (numEntries_ >= 0);
Point<float> p1 (gradient.point1);
Point<float> p2 (gradient.point2);
if (! transform.isIdentity())
{
const Line<float> l (p2, p1);
Point<float> p3 = l.getPointAlongLine (0.0f, 100.0f);
p1.applyTransform (transform);
p2.applyTransform (transform);
p3.applyTransform (transform);
p2 = Line<float> (p2, p3).findNearestPointTo (p1);
}
vertical = std::abs (p1.getX() - p2.getX()) < 0.001f;
horizontal = std::abs (p1.getY() - p2.getY()) < 0.001f;
if (vertical)
{
scale = roundToInt ((numEntries << (int) numScaleBits) / (double) (p2.getY() - p1.getY()));
start = roundToInt (p1.getY() * scale);
}
else if (horizontal)
{
scale = roundToInt ((numEntries << (int) numScaleBits) / (double) (p2.getX() - p1.getX()));
start = roundToInt (p1.getX() * scale);
}
else
{
grad = (p2.getY() - p1.getY()) / (double) (p1.getX() - p2.getX());
yTerm = p1.getY() - p1.getX() / grad;
scale = roundToInt ((numEntries << (int) numScaleBits) / (yTerm * grad - (p2.getY() * grad - p2.getX())));
grad *= scale;
}
}
forcedinline void setY (const int y) noexcept
{
if (vertical)
linePix = lookupTable [jlimit (0, numEntries, (y * scale - start) >> (int) numScaleBits)];
else if (! horizontal)
start = roundToInt ((y - yTerm) * grad);
}
inline PixelARGB getPixel (const int x) const noexcept
{
return vertical ? linePix
: lookupTable [jlimit (0, numEntries, (x * scale - start) >> (int) numScaleBits)];
}
private:
const PixelARGB* const lookupTable;
const int numEntries;
PixelARGB linePix;
int start, scale;
double grad, yTerm;
bool vertical, horizontal;
enum { numScaleBits = 12 };
JUCE_DECLARE_NON_COPYABLE (LinearGradientPixelGenerator);
};
//==============================================================================
class RadialGradientPixelGenerator
{
public:
RadialGradientPixelGenerator (const ColourGradient& gradient, const AffineTransform&,
const PixelARGB* const lookupTable_, const int numEntries_)
: lookupTable (lookupTable_),
numEntries (numEntries_),
gx1 (gradient.point1.getX()),
gy1 (gradient.point1.getY())
{
jassert (numEntries_ >= 0);
const Point<float> diff (gradient.point1 - gradient.point2);
maxDist = diff.getX() * diff.getX() + diff.getY() * diff.getY();
invScale = numEntries / std::sqrt (maxDist);
jassert (roundToInt (std::sqrt (maxDist) * invScale) <= numEntries);
}
forcedinline void setY (const int y) noexcept
{
dy = y - gy1;
dy *= dy;
}
inline PixelARGB getPixel (const int px) const noexcept
{
double x = px - gx1;
x *= x;
x += dy;
return lookupTable [x >= maxDist ? numEntries : roundToInt (std::sqrt (x) * invScale)];
}
protected:
const PixelARGB* const lookupTable;
const int numEntries;
const double gx1, gy1;
double maxDist, invScale, dy;
JUCE_DECLARE_NON_COPYABLE (RadialGradientPixelGenerator);
};
//==============================================================================
class TransformedRadialGradientPixelGenerator : public RadialGradientPixelGenerator
{
public:
TransformedRadialGradientPixelGenerator (const ColourGradient& gradient, const AffineTransform& transform,
const PixelARGB* const lookupTable_, const int numEntries_)
: RadialGradientPixelGenerator (gradient, transform, lookupTable_, numEntries_),
inverseTransform (transform.inverted())
{
tM10 = inverseTransform.mat10;
tM00 = inverseTransform.mat00;
}
forcedinline void setY (const int y) noexcept
{
lineYM01 = inverseTransform.mat01 * y + inverseTransform.mat02 - gx1;
lineYM11 = inverseTransform.mat11 * y + inverseTransform.mat12 - gy1;
}
inline PixelARGB getPixel (const int px) const noexcept
{
double x = px;
const double y = tM10 * x + lineYM11;
x = tM00 * x + lineYM01;
x *= x;
x += y * y;
if (x >= maxDist)
return lookupTable [numEntries];
else
return lookupTable [jmin (numEntries, roundToInt (std::sqrt (x) * invScale))];
}
private:
double tM10, tM00, lineYM01, lineYM11;
const AffineTransform inverseTransform;
JUCE_DECLARE_NON_COPYABLE (TransformedRadialGradientPixelGenerator);
};
//==============================================================================
template <class PixelType, class GradientType>
class GradientEdgeTableRenderer : public GradientType
{
public:
GradientEdgeTableRenderer (const Image::BitmapData& destData_, const ColourGradient& gradient, const AffineTransform& transform,
const PixelARGB* const lookupTable_, const int numEntries_)
: GradientType (gradient, transform, lookupTable_, numEntries_ - 1),
destData (destData_)
{
}
forcedinline void setEdgeTableYPos (const int y) noexcept
{
linePixels = (PixelType*) destData.getLinePointer (y);
GradientType::setY (y);
}
forcedinline void handleEdgeTablePixel (const int x, const int alphaLevel) const noexcept
{
linePixels[x].blend (GradientType::getPixel (x), (uint32) alphaLevel);
}
forcedinline void handleEdgeTablePixelFull (const int x) const noexcept
{
linePixels[x].blend (GradientType::getPixel (x));
}
void handleEdgeTableLine (int x, int width, const int alphaLevel) const noexcept
{
PixelType* dest = linePixels + x;
if (alphaLevel < 0xff)
{
do
{
(dest++)->blend (GradientType::getPixel (x++), (uint32) alphaLevel);
} while (--width > 0);
}
else
{
do
{
(dest++)->blend (GradientType::getPixel (x++));
} while (--width > 0);
}
}
void handleEdgeTableLineFull (int x, int width) const noexcept
{
PixelType* dest = linePixels + x;
do
{
(dest++)->blend (GradientType::getPixel (x++));
} while (--width > 0);
}
private:
const Image::BitmapData& destData;
PixelType* linePixels;
JUCE_DECLARE_NON_COPYABLE (GradientEdgeTableRenderer);
};
//==============================================================================
template <class DestPixelType, class SrcPixelType, bool repeatPattern>
class ImageFillEdgeTableRenderer
{
public:
ImageFillEdgeTableRenderer (const Image::BitmapData& destData_,
const Image::BitmapData& srcData_,
const int extraAlpha_,
const int x, const int y)
: destData (destData_),
srcData (srcData_),
extraAlpha (extraAlpha_ + 1),
xOffset (repeatPattern ? negativeAwareModulo (x, srcData_.width) - srcData_.width : x),
yOffset (repeatPattern ? negativeAwareModulo (y, srcData_.height) - srcData_.height : y)
{
}
forcedinline void setEdgeTableYPos (int y) noexcept
{
linePixels = (DestPixelType*) destData.getLinePointer (y);
y -= yOffset;
if (repeatPattern)
{
jassert (y >= 0);
y %= srcData.height;
}
sourceLineStart = (SrcPixelType*) srcData.getLinePointer (y);
}
forcedinline void handleEdgeTablePixel (const int x, int alphaLevel) const noexcept
{
alphaLevel = (alphaLevel * extraAlpha) >> 8;
linePixels[x].blend (sourceLineStart [repeatPattern ? ((x - xOffset) % srcData.width) : (x - xOffset)], (uint32) alphaLevel);
}
forcedinline void handleEdgeTablePixelFull (const int x) const noexcept
{
linePixels[x].blend (sourceLineStart [repeatPattern ? ((x - xOffset) % srcData.width) : (x - xOffset)], (uint32) extraAlpha);
}
void handleEdgeTableLine (int x, int width, int alphaLevel) const noexcept
{
DestPixelType* dest = linePixels + x;
alphaLevel = (alphaLevel * extraAlpha) >> 8;
x -= xOffset;
jassert (repeatPattern || (x >= 0 && x + width <= srcData.width));
if (alphaLevel < 0xfe)
{
do
{
dest++ ->blend (sourceLineStart [repeatPattern ? (x++ % srcData.width) : x++], (uint32) alphaLevel);
} while (--width > 0);
}
else
{
if (repeatPattern)
{
do
{
dest++ ->blend (sourceLineStart [x++ % srcData.width]);
} while (--width > 0);
}
else
{
copyRow (dest, sourceLineStart + x, width);
}
}
}
void handleEdgeTableLineFull (int x, int width) const noexcept
{
DestPixelType* dest = linePixels + x;
x -= xOffset;
jassert (repeatPattern || (x >= 0 && x + width <= srcData.width));
if (extraAlpha < 0xfe)
{
do
{
dest++ ->blend (sourceLineStart [repeatPattern ? (x++ % srcData.width) : x++], (uint32) extraAlpha);
} while (--width > 0);
}
else
{
if (repeatPattern)
{
do
{
dest++ ->blend (sourceLineStart [x++ % srcData.width]);
} while (--width > 0);
}
else
{
copyRow (dest, sourceLineStart + x, width);
}
}
}
void clipEdgeTableLine (EdgeTable& et, int x, int y, int width)
{
jassert (x - xOffset >= 0 && x + width - xOffset <= srcData.width);
SrcPixelType* s = (SrcPixelType*) srcData.getLinePointer (y - yOffset);
uint8* mask = (uint8*) (s + x - xOffset);
if (sizeof (SrcPixelType) == sizeof (PixelARGB))
mask += PixelARGB::indexA;
et.clipLineToMask (x, y, mask, sizeof (SrcPixelType), width);
}
private:
const Image::BitmapData& destData;
const Image::BitmapData& srcData;
const int extraAlpha, xOffset, yOffset;
DestPixelType* linePixels;
SrcPixelType* sourceLineStart;
template <class PixelType1, class PixelType2>
static forcedinline void copyRow (PixelType1* dest, PixelType2* src, int width) noexcept
{
do
{
dest++ ->blend (*src++);
} while (--width > 0);
}
static forcedinline void copyRow (PixelRGB* dest, PixelRGB* src, int width) noexcept
{
memcpy (dest, src, width * sizeof (PixelRGB));
}
JUCE_DECLARE_NON_COPYABLE (ImageFillEdgeTableRenderer);
};
//==============================================================================
template <class DestPixelType, class SrcPixelType, bool repeatPattern>
class TransformedImageFillEdgeTableRenderer
{
public:
TransformedImageFillEdgeTableRenderer (const Image::BitmapData& destData_,
const Image::BitmapData& srcData_,
const AffineTransform& transform,
const int extraAlpha_,
const bool betterQuality_)
: interpolator (transform,
betterQuality_ ? 0.5f : 0.0f,
betterQuality_ ? -128 : 0),
destData (destData_),
srcData (srcData_),
extraAlpha (extraAlpha_ + 1),
betterQuality (betterQuality_),
maxX (srcData_.width - 1),
maxY (srcData_.height - 1),
scratchSize (2048)
{
scratchBuffer.malloc (scratchSize);
}
forcedinline void setEdgeTableYPos (const int newY) noexcept
{
y = newY;
linePixels = (DestPixelType*) destData.getLinePointer (newY);
}
forcedinline void handleEdgeTablePixel (const int x, const int alphaLevel) noexcept
{
SrcPixelType p;
generate (&p, x, 1);
linePixels[x].blend (p, (uint32) (alphaLevel * extraAlpha) >> 8);
}
forcedinline void handleEdgeTablePixelFull (const int x) noexcept
{
SrcPixelType p;
generate (&p, x, 1);
linePixels[x].blend (p, (uint32) extraAlpha);
}
void handleEdgeTableLine (const int x, int width, int alphaLevel) noexcept
{
if (width > (int) scratchSize)
{
scratchSize = (size_t) width;
scratchBuffer.malloc (scratchSize);
}
SrcPixelType* span = scratchBuffer;
generate (span, x, width);
DestPixelType* dest = linePixels + x;
alphaLevel *= extraAlpha;
alphaLevel >>= 8;
if (alphaLevel < 0xfe)
{
do
{
dest++ ->blend (*span++, (uint32) alphaLevel);
} while (--width > 0);
}
else
{
do
{
dest++ ->blend (*span++);
} while (--width > 0);
}
}
forcedinline void handleEdgeTableLineFull (const int x, int width) noexcept
{
handleEdgeTableLine (x, width, 255);
}
void clipEdgeTableLine (EdgeTable& et, int x, int y_, int width)
{
if (width > (int) scratchSize)
{
scratchSize = (size_t) width;
scratchBuffer.malloc (scratchSize);
}
y = y_;
generate (scratchBuffer.getData(), x, width);
et.clipLineToMask (x, y_,
reinterpret_cast<uint8*> (scratchBuffer.getData()) + SrcPixelType::indexA,
sizeof (SrcPixelType), width);
}
private:
//==============================================================================
template <class PixelType>
void generate (PixelType* dest, const int x, int numPixels) noexcept
{
this->interpolator.setStartOfLine ((float) x, (float) y, numPixels);
do
{
int hiResX, hiResY;
this->interpolator.next (hiResX, hiResY);
int loResX = hiResX >> 8;
int loResY = hiResY >> 8;
if (repeatPattern)
{
loResX = negativeAwareModulo (loResX, srcData.width);
loResY = negativeAwareModulo (loResY, srcData.height);
}
if (betterQuality)
{
if (isPositiveAndBelow (loResX, maxX))
{
if (isPositiveAndBelow (loResY, maxY))
{
// In the centre of the image..
render4PixelAverage (dest, this->srcData.getPixelPointer (loResX, loResY),
hiResX & 255, hiResY & 255);
++dest;
continue;
}
else
{
// At a top or bottom edge..
if (! repeatPattern)
{
if (loResY < 0)
render2PixelAverageX (dest, this->srcData.getPixelPointer (loResX, 0), hiResX & 255);
else
render2PixelAverageX (dest, this->srcData.getPixelPointer (loResX, maxY), hiResX & 255);
++dest;
continue;
}
}
}
else
{
if (isPositiveAndBelow (loResY, maxY))
{
// At a left or right hand edge..
if (! repeatPattern)
{
if (loResX < 0)
render2PixelAverageY (dest, this->srcData.getPixelPointer (0, loResY), hiResY & 255);
else
render2PixelAverageY (dest, this->srcData.getPixelPointer (maxX, loResY), hiResY & 255);
++dest;
continue;
}
}
}
}
if (! repeatPattern)
{
if (loResX < 0) loResX = 0;
if (loResY < 0) loResY = 0;
if (loResX > maxX) loResX = maxX;
if (loResY > maxY) loResY = maxY;
}
dest->set (*(const PixelType*) this->srcData.getPixelPointer (loResX, loResY));
++dest;
} while (--numPixels > 0);
}
//==============================================================================
void render4PixelAverage (PixelARGB* const dest, const uint8* src, const int subPixelX, const int subPixelY) noexcept
{
uint32 c[4] = { 256 * 128, 256 * 128, 256 * 128, 256 * 128 };
uint32 weight = (uint32) ((256 - subPixelX) * (256 - subPixelY));
c[0] += weight * src[0];
c[1] += weight * src[1];
c[2] += weight * src[2];
c[3] += weight * src[3];
weight = (uint32) (subPixelX * (256 - subPixelY));
c[0] += weight * src[4];
c[1] += weight * src[5];
c[2] += weight * src[6];
c[3] += weight * src[7];
src += this->srcData.lineStride;
weight = (uint32) ((256 - subPixelX) * subPixelY);
c[0] += weight * src[0];
c[1] += weight * src[1];
c[2] += weight * src[2];
c[3] += weight * src[3];
weight = (uint32) (subPixelX * subPixelY);
c[0] += weight * src[4];
c[1] += weight * src[5];
c[2] += weight * src[6];
c[3] += weight * src[7];
dest->setARGB ((uint8) (c[PixelARGB::indexA] >> 16),
(uint8) (c[PixelARGB::indexR] >> 16),
(uint8) (c[PixelARGB::indexG] >> 16),
(uint8) (c[PixelARGB::indexB] >> 16));
}
void render2PixelAverageX (PixelARGB* const dest, const uint8* src, const int subPixelX) noexcept
{
uint32 c[4] = { 128, 128, 128, 128 };
uint32 weight = (uint32) (256 - subPixelX);
c[0] += weight * src[0];
c[1] += weight * src[1];
c[2] += weight * src[2];
c[3] += weight * src[3];
weight = (uint32) subPixelX;
c[0] += weight * src[4];
c[1] += weight * src[5];
c[2] += weight * src[6];
c[3] += weight * src[7];
dest->setARGB ((uint8) (c[PixelARGB::indexA] >> 8),
(uint8) (c[PixelARGB::indexR] >> 8),
(uint8) (c[PixelARGB::indexG] >> 8),
(uint8) (c[PixelARGB::indexB] >> 8));
}
void render2PixelAverageY (PixelARGB* const dest, const uint8* src, const int subPixelY) noexcept
{
uint32 c[4] = { 128, 128, 128, 128 };
uint32 weight = (uint32) (256 - subPixelY);
c[0] += weight * src[0];
c[1] += weight * src[1];
c[2] += weight * src[2];
c[3] += weight * src[3];
src += this->srcData.lineStride;
weight = (uint32) subPixelY;
c[0] += weight * src[0];
c[1] += weight * src[1];
c[2] += weight * src[2];
c[3] += weight * src[3];
dest->setARGB ((uint8) (c[PixelARGB::indexA] >> 8),
(uint8) (c[PixelARGB::indexR] >> 8),
(uint8) (c[PixelARGB::indexG] >> 8),
(uint8) (c[PixelARGB::indexB] >> 8));
}
//==============================================================================
void render4PixelAverage (PixelRGB* const dest, const uint8* src, const int subPixelX, const int subPixelY) noexcept
{
uint32 c[3] = { 256 * 128, 256 * 128, 256 * 128 };
uint32 weight = (uint32) ((256 - subPixelX) * (256 - subPixelY));
c[0] += weight * src[0];
c[1] += weight * src[1];
c[2] += weight * src[2];
weight = (uint32) (subPixelX * (256 - subPixelY));
c[0] += weight * src[3];
c[1] += weight * src[4];
c[2] += weight * src[5];
src += this->srcData.lineStride;
weight = (uint32) ((256 - subPixelX) * subPixelY);
c[0] += weight * src[0];
c[1] += weight * src[1];
c[2] += weight * src[2];
weight = (uint32) (subPixelX * subPixelY);
c[0] += weight * src[3];
c[1] += weight * src[4];
c[2] += weight * src[5];
dest->setARGB ((uint8) 255,
(uint8) (c[PixelRGB::indexR] >> 16),
(uint8) (c[PixelRGB::indexG] >> 16),
(uint8) (c[PixelRGB::indexB] >> 16));
}
void render2PixelAverageX (PixelRGB* const dest, const uint8* src, const int subPixelX) noexcept
{
uint32 c[3] = { 128, 128, 128 };
const uint32 weight = (uint32) (256 - subPixelX);
c[0] += weight * src[0];
c[1] += weight * src[1];
c[2] += weight * src[2];
c[0] += subPixelX * src[3];
c[1] += subPixelX * src[4];
c[2] += subPixelX * src[5];
dest->setARGB ((uint8) 255,
(uint8) (c[PixelRGB::indexR] >> 8),
(uint8) (c[PixelRGB::indexG] >> 8),
(uint8) (c[PixelRGB::indexB] >> 8));
}
void render2PixelAverageY (PixelRGB* const dest, const uint8* src, const int subPixelY) noexcept
{
uint32 c[3] = { 128, 128, 128 };
const uint32 weight = (uint32) (256 - subPixelY);
c[0] += weight * src[0];
c[1] += weight * src[1];
c[2] += weight * src[2];
src += this->srcData.lineStride;
c[0] += subPixelY * src[0];
c[1] += subPixelY * src[1];
c[2] += subPixelY * src[2];
dest->setARGB ((uint8) 255,
(uint8) (c[PixelRGB::indexR] >> 8),
(uint8) (c[PixelRGB::indexG] >> 8),
(uint8) (c[PixelRGB::indexB] >> 8));
}
//==============================================================================
void render4PixelAverage (PixelAlpha* const dest, const uint8* src, const int subPixelX, const int subPixelY) noexcept
{
uint32 c = 256 * 128;
c += src[0] * ((256 - subPixelX) * (256 - subPixelY));
c += src[1] * (subPixelX * (256 - subPixelY));
src += this->srcData.lineStride;
c += src[0] * ((256 - subPixelX) * subPixelY);
c += src[1] * (subPixelX * subPixelY);
*((uint8*) dest) = (uint8) (c >> 16);
}
void render2PixelAverageX (PixelAlpha* const dest, const uint8* src, const int subPixelX) noexcept
{
uint32 c = 128;
c += src[0] * (256 - subPixelX);
c += src[1] * subPixelX;
*((uint8*) dest) = (uint8) (c >> 8);
}
void render2PixelAverageY (PixelAlpha* const dest, const uint8* src, const int subPixelY) noexcept
{
uint32 c = 128;
c += src[0] * (256 - subPixelY);
src += this->srcData.lineStride;
c += src[0] * subPixelY;
*((uint8*) dest) = (uint8) (c >> 8);
}
//==============================================================================
class TransformedImageSpanInterpolator
{
public:
TransformedImageSpanInterpolator (const AffineTransform& transform, const float pixelOffset_, const int pixelOffsetInt_) noexcept
: inverseTransform (transform.inverted()),
pixelOffset (pixelOffset_), pixelOffsetInt (pixelOffsetInt_)
{}
void setStartOfLine (float x, float y, const int numPixels) noexcept
{
jassert (numPixels > 0);
x += pixelOffset;
y += pixelOffset;
float x1 = x, y1 = y;
x += numPixels;
inverseTransform.transformPoints (x1, y1, x, y);
xBresenham.set ((int) (x1 * 256.0f), (int) (x * 256.0f), numPixels, pixelOffsetInt);
yBresenham.set ((int) (y1 * 256.0f), (int) (y * 256.0f), numPixels, pixelOffsetInt);
}
void next (int& x, int& y) noexcept
{
x = xBresenham.n;
xBresenham.stepToNext();
y = yBresenham.n;
yBresenham.stepToNext();
}
private:
class BresenhamInterpolator
{
public:
BresenhamInterpolator() noexcept {}
void set (const int n1, const int n2, const int numSteps_, const int pixelOffsetInt) noexcept
{
numSteps = numSteps_;
step = (n2 - n1) / numSteps;
remainder = modulo = (n2 - n1) % numSteps;
n = n1 + pixelOffsetInt;
if (modulo <= 0)
{
modulo += numSteps;
remainder += numSteps;
--step;
}
modulo -= numSteps;
}
forcedinline void stepToNext() noexcept
{
modulo += remainder;
n += step;
if (modulo > 0)
{
modulo -= numSteps;
++n;
}
}
int n;
private:
int numSteps, step, modulo, remainder;
};
const AffineTransform inverseTransform;
BresenhamInterpolator xBresenham, yBresenham;
const float pixelOffset;
const int pixelOffsetInt;
JUCE_DECLARE_NON_COPYABLE (TransformedImageSpanInterpolator);
};
//==============================================================================
TransformedImageSpanInterpolator interpolator;
const Image::BitmapData& destData;
const Image::BitmapData& srcData;
const int extraAlpha;
const bool betterQuality;
const int maxX, maxY;
int y;
DestPixelType* linePixels;
HeapBlock <SrcPixelType> scratchBuffer;
size_t scratchSize;
JUCE_DECLARE_NON_COPYABLE (TransformedImageFillEdgeTableRenderer);
};
//==============================================================================
class ClipRegionBase : public SingleThreadedReferenceCountedObject
{
public:
ClipRegionBase() {}
virtual ~ClipRegionBase() {}
typedef ReferenceCountedObjectPtr<ClipRegionBase> Ptr;
virtual Ptr clone() const = 0;
virtual Ptr applyClipTo (const Ptr& target) const = 0;
virtual Ptr clipToRectangle (const Rectangle<int>& r) = 0;
virtual Ptr clipToRectangleList (const RectangleList& r) = 0;
virtual Ptr excludeClipRectangle (const Rectangle<int>& r) = 0;
virtual Ptr clipToPath (const Path& p, const AffineTransform& transform) = 0;
virtual Ptr clipToEdgeTable (const EdgeTable& et) = 0;
virtual Ptr clipToImageAlpha (const Image& image, const AffineTransform& t, const bool betterQuality) = 0;
virtual Ptr translated (const Point<int>& delta) = 0;
virtual bool clipRegionIntersects (const Rectangle<int>& r) const = 0;
virtual Rectangle<int> getClipBounds() const = 0;
virtual void fillRectWithColour (Image::BitmapData& destData, const Rectangle<int>& area, const PixelARGB& colour, bool replaceContents) const = 0;
virtual void fillRectWithColour (Image::BitmapData& destData, const Rectangle<float>& area, const PixelARGB& colour) const = 0;
virtual void fillAllWithColour (Image::BitmapData& destData, const PixelARGB& colour, bool replaceContents) const = 0;
virtual void fillAllWithGradient (Image::BitmapData& destData, ColourGradient& gradient, const AffineTransform& transform, bool isIdentity) const = 0;
virtual void renderImageTransformed (const Image::BitmapData& destData, const Image::BitmapData& srcData, const int alpha, const AffineTransform& t, bool betterQuality, bool tiledFill) const = 0;
virtual void renderImageUntransformed (const Image::BitmapData& destData, const Image::BitmapData& srcData, const int alpha, int x, int y, bool tiledFill) const = 0;
protected:
//==============================================================================
template <class Iterator>
static void renderImageTransformedInternal (Iterator& iter, const Image::BitmapData& destData, const Image::BitmapData& srcData,
const int alpha, const AffineTransform& transform, bool betterQuality, bool tiledFill)
{
switch (destData.pixelFormat)
{
case Image::ARGB:
switch (srcData.pixelFormat)
{
case Image::ARGB:
if (tiledFill) { TransformedImageFillEdgeTableRenderer <PixelARGB, PixelARGB, true> r (destData, srcData, transform, alpha, betterQuality); iter.iterate (r); }
else { TransformedImageFillEdgeTableRenderer <PixelARGB, PixelARGB, false> r (destData, srcData, transform, alpha, betterQuality); iter.iterate (r); }
break;
case Image::RGB:
if (tiledFill) { TransformedImageFillEdgeTableRenderer <PixelARGB, PixelRGB, true> r (destData, srcData, transform, alpha, betterQuality); iter.iterate (r); }
else { TransformedImageFillEdgeTableRenderer <PixelARGB, PixelRGB, false> r (destData, srcData, transform, alpha, betterQuality); iter.iterate (r); }
break;
default:
if (tiledFill) { TransformedImageFillEdgeTableRenderer <PixelARGB, PixelAlpha, true> r (destData, srcData, transform, alpha, betterQuality); iter.iterate (r); }
else { TransformedImageFillEdgeTableRenderer <PixelARGB, PixelAlpha, false> r (destData, srcData, transform, alpha, betterQuality); iter.iterate (r); }
break;
}
break;
case Image::RGB:
switch (srcData.pixelFormat)
{
case Image::ARGB:
if (tiledFill) { TransformedImageFillEdgeTableRenderer <PixelRGB, PixelARGB, true> r (destData, srcData, transform, alpha, betterQuality); iter.iterate (r); }
else { TransformedImageFillEdgeTableRenderer <PixelRGB, PixelARGB, false> r (destData, srcData, transform, alpha, betterQuality); iter.iterate (r); }
break;
case Image::RGB:
if (tiledFill) { TransformedImageFillEdgeTableRenderer <PixelRGB, PixelRGB, true> r (destData, srcData, transform, alpha, betterQuality); iter.iterate (r); }
else { TransformedImageFillEdgeTableRenderer <PixelRGB, PixelRGB, false> r (destData, srcData, transform, alpha, betterQuality); iter.iterate (r); }
break;
default:
if (tiledFill) { TransformedImageFillEdgeTableRenderer <PixelRGB, PixelAlpha, true> r (destData, srcData, transform, alpha, betterQuality); iter.iterate (r); }
else { TransformedImageFillEdgeTableRenderer <PixelRGB, PixelAlpha, false> r (destData, srcData, transform, alpha, betterQuality); iter.iterate (r); }
break;
}
break;
default:
switch (srcData.pixelFormat)
{
case Image::ARGB:
if (tiledFill) { TransformedImageFillEdgeTableRenderer <PixelAlpha, PixelARGB, true> r (destData, srcData, transform, alpha, betterQuality); iter.iterate (r); }
else { TransformedImageFillEdgeTableRenderer <PixelAlpha, PixelARGB, false> r (destData, srcData, transform, alpha, betterQuality); iter.iterate (r); }
break;
case Image::RGB:
if (tiledFill) { TransformedImageFillEdgeTableRenderer <PixelAlpha, PixelRGB, true> r (destData, srcData, transform, alpha, betterQuality); iter.iterate (r); }
else { TransformedImageFillEdgeTableRenderer <PixelAlpha, PixelRGB, false> r (destData, srcData, transform, alpha, betterQuality); iter.iterate (r); }
break;
default:
if (tiledFill) { TransformedImageFillEdgeTableRenderer <PixelAlpha, PixelAlpha, true> r (destData, srcData, transform, alpha, betterQuality); iter.iterate (r); }
else { TransformedImageFillEdgeTableRenderer <PixelAlpha, PixelAlpha, false> r (destData, srcData, transform, alpha, betterQuality); iter.iterate (r); }
break;
}
break;
}
}
template <class Iterator>
static void renderImageUntransformedInternal (Iterator& iter, const Image::BitmapData& destData, const Image::BitmapData& srcData, const int alpha, int x, int y, bool tiledFill)
{
switch (destData.pixelFormat)
{
case Image::ARGB:
switch (srcData.pixelFormat)
{
case Image::ARGB:
if (tiledFill) { ImageFillEdgeTableRenderer <PixelARGB, PixelARGB, true> r (destData, srcData, alpha, x, y); iter.iterate (r); }
else { ImageFillEdgeTableRenderer <PixelARGB, PixelARGB, false> r (destData, srcData, alpha, x, y); iter.iterate (r); }
break;
case Image::RGB:
if (tiledFill) { ImageFillEdgeTableRenderer <PixelARGB, PixelRGB, true> r (destData, srcData, alpha, x, y); iter.iterate (r); }
else { ImageFillEdgeTableRenderer <PixelARGB, PixelRGB, false> r (destData, srcData, alpha, x, y); iter.iterate (r); }
break;
default:
if (tiledFill) { ImageFillEdgeTableRenderer <PixelARGB, PixelAlpha, true> r (destData, srcData, alpha, x, y); iter.iterate (r); }
else { ImageFillEdgeTableRenderer <PixelARGB, PixelAlpha, false> r (destData, srcData, alpha, x, y); iter.iterate (r); }
break;
}
break;
case Image::RGB:
switch (srcData.pixelFormat)
{
case Image::ARGB:
if (tiledFill) { ImageFillEdgeTableRenderer <PixelRGB, PixelARGB, true> r (destData, srcData, alpha, x, y); iter.iterate (r); }
else { ImageFillEdgeTableRenderer <PixelRGB, PixelARGB, false> r (destData, srcData, alpha, x, y); iter.iterate (r); }
break;
case Image::RGB:
if (tiledFill) { ImageFillEdgeTableRenderer <PixelRGB, PixelRGB, true> r (destData, srcData, alpha, x, y); iter.iterate (r); }
else { ImageFillEdgeTableRenderer <PixelRGB, PixelRGB, false> r (destData, srcData, alpha, x, y); iter.iterate (r); }
break;
default:
if (tiledFill) { ImageFillEdgeTableRenderer <PixelRGB, PixelAlpha, true> r (destData, srcData, alpha, x, y); iter.iterate (r); }
else { ImageFillEdgeTableRenderer <PixelRGB, PixelAlpha, false> r (destData, srcData, alpha, x, y); iter.iterate (r); }
break;
}
break;
default:
switch (srcData.pixelFormat)
{
case Image::ARGB:
if (tiledFill) { ImageFillEdgeTableRenderer <PixelAlpha, PixelARGB, true> r (destData, srcData, alpha, x, y); iter.iterate (r); }
else { ImageFillEdgeTableRenderer <PixelAlpha, PixelARGB, false> r (destData, srcData, alpha, x, y); iter.iterate (r); }
break;
case Image::RGB:
if (tiledFill) { ImageFillEdgeTableRenderer <PixelAlpha, PixelRGB, true> r (destData, srcData, alpha, x, y); iter.iterate (r); }
else { ImageFillEdgeTableRenderer <PixelAlpha, PixelRGB, false> r (destData, srcData, alpha, x, y); iter.iterate (r); }
break;
default:
if (tiledFill) { ImageFillEdgeTableRenderer <PixelAlpha, PixelAlpha, true> r (destData, srcData, alpha, x, y); iter.iterate (r); }
else { ImageFillEdgeTableRenderer <PixelAlpha, PixelAlpha, false> r (destData, srcData, alpha, x, y); iter.iterate (r); }
break;
}
break;
}
}
template <class Iterator, class DestPixelType>
static void renderSolidFill (Iterator& iter, const Image::BitmapData& destData, const PixelARGB& fillColour, const bool replaceContents, DestPixelType*)
{
jassert (destData.pixelStride == sizeof (DestPixelType));
if (replaceContents)
{
SolidColourEdgeTableRenderer <DestPixelType, true> r (destData, fillColour);
iter.iterate (r);
}
else
{
SolidColourEdgeTableRenderer <DestPixelType, false> r (destData, fillColour);
iter.iterate (r);
}
}
template <class Iterator, class DestPixelType>
static void renderGradient (Iterator& iter, const Image::BitmapData& destData, const ColourGradient& g, const AffineTransform& transform,
const PixelARGB* const lookupTable, const int numLookupEntries, const bool isIdentity, DestPixelType*)
{
jassert (destData.pixelStride == sizeof (DestPixelType));
if (g.isRadial)
{
if (isIdentity)
{
GradientEdgeTableRenderer <DestPixelType, RadialGradientPixelGenerator> renderer (destData, g, transform, lookupTable, numLookupEntries);
iter.iterate (renderer);
}
else
{
GradientEdgeTableRenderer <DestPixelType, TransformedRadialGradientPixelGenerator> renderer (destData, g, transform, lookupTable, numLookupEntries);
iter.iterate (renderer);
}
}
else
{
GradientEdgeTableRenderer <DestPixelType, LinearGradientPixelGenerator> renderer (destData, g, transform, lookupTable, numLookupEntries);
iter.iterate (renderer);
}
}
};
//==============================================================================
class ClipRegion_EdgeTable : public ClipRegionBase
{
public:
ClipRegion_EdgeTable (const EdgeTable& e) : edgeTable (e) {}
ClipRegion_EdgeTable (const Rectangle<int>& r) : edgeTable (r) {}
ClipRegion_EdgeTable (const Rectangle<float>& r) : edgeTable (r) {}
ClipRegion_EdgeTable (const RectangleList& r) : edgeTable (r) {}
ClipRegion_EdgeTable (const Rectangle<int>& bounds, const Path& p, const AffineTransform& t) : edgeTable (bounds, p, t) {}
ClipRegion_EdgeTable (const ClipRegion_EdgeTable& other) : edgeTable (other.edgeTable) {}
Ptr clone() const
{
return new ClipRegion_EdgeTable (*this);
}
Ptr applyClipTo (const Ptr& target) const
{
return target->clipToEdgeTable (edgeTable);
}
Ptr clipToRectangle (const Rectangle<int>& r)
{
edgeTable.clipToRectangle (r);
return edgeTable.isEmpty() ? nullptr : this;
}
Ptr clipToRectangleList (const RectangleList& r)
{
RectangleList inverse (edgeTable.getMaximumBounds());
if (inverse.subtract (r))
for (RectangleList::Iterator iter (inverse); iter.next();)
edgeTable.excludeRectangle (*iter.getRectangle());
return edgeTable.isEmpty() ? nullptr : this;
}
Ptr excludeClipRectangle (const Rectangle<int>& r)
{
edgeTable.excludeRectangle (r);
return edgeTable.isEmpty() ? nullptr : this;
}
Ptr clipToPath (const Path& p, const AffineTransform& transform)
{
EdgeTable et (edgeTable.getMaximumBounds(), p, transform);
edgeTable.clipToEdgeTable (et);
return edgeTable.isEmpty() ? nullptr : this;
}
Ptr clipToEdgeTable (const EdgeTable& et)
{
edgeTable.clipToEdgeTable (et);
return edgeTable.isEmpty() ? nullptr : this;
}
Ptr clipToImageAlpha (const Image& image, const AffineTransform& transform, const bool betterQuality)
{
const Image::BitmapData srcData (image, Image::BitmapData::readOnly);
if (transform.isOnlyTranslation())
{
// If our translation doesn't involve any distortion, just use a simple blit..
const int tx = (int) (transform.getTranslationX() * 256.0f);
const int ty = (int) (transform.getTranslationY() * 256.0f);
if ((! betterQuality) || ((tx | ty) & 224) == 0)
{
const int imageX = ((tx + 128) >> 8);
const int imageY = ((ty + 128) >> 8);
if (image.getFormat() == Image::ARGB)
straightClipImage (srcData, imageX, imageY, (PixelARGB*) 0);
else
straightClipImage (srcData, imageX, imageY, (PixelAlpha*) 0);
return edgeTable.isEmpty() ? nullptr : this;
}
}
if (transform.isSingularity())
return nullptr;
{
Path p;
p.addRectangle (0, 0, (float) srcData.width, (float) srcData.height);
EdgeTable et2 (edgeTable.getMaximumBounds(), p, transform);
edgeTable.clipToEdgeTable (et2);
}
if (! edgeTable.isEmpty())
{
if (image.getFormat() == Image::ARGB)
transformedClipImage (srcData, transform, betterQuality, (PixelARGB*) 0);
else
transformedClipImage (srcData, transform, betterQuality, (PixelAlpha*) 0);
}
return edgeTable.isEmpty() ? nullptr : this;
}
Ptr translated (const Point<int>& delta)
{
edgeTable.translate ((float) delta.getX(), delta.getY());
return edgeTable.isEmpty() ? nullptr : this;
}
bool clipRegionIntersects (const Rectangle<int>& r) const
{
return edgeTable.getMaximumBounds().intersects (r);
}
Rectangle<int> getClipBounds() const
{
return edgeTable.getMaximumBounds();
}
void fillRectWithColour (Image::BitmapData& destData, const Rectangle<int>& area, const PixelARGB& colour, bool replaceContents) const
{
const Rectangle<int> totalClip (edgeTable.getMaximumBounds());
const Rectangle<int> clipped (totalClip.getIntersection (area));
if (! clipped.isEmpty())
{
ClipRegion_EdgeTable et (clipped);
et.edgeTable.clipToEdgeTable (edgeTable);
et.fillAllWithColour (destData, colour, replaceContents);
}
}
void fillRectWithColour (Image::BitmapData& destData, const Rectangle<float>& area, const PixelARGB& colour) const
{
const Rectangle<float> totalClip (edgeTable.getMaximumBounds().toFloat());
const Rectangle<float> clipped (totalClip.getIntersection (area));
if (! clipped.isEmpty())
{
ClipRegion_EdgeTable et (clipped);
et.edgeTable.clipToEdgeTable (edgeTable);
et.fillAllWithColour (destData, colour, false);
}
}
void fillAllWithColour (Image::BitmapData& destData, const PixelARGB& colour, bool replaceContents) const
{
switch (destData.pixelFormat)
{
case Image::ARGB: renderSolidFill (edgeTable, destData, colour, replaceContents, (PixelARGB*) 0); break;
case Image::RGB: renderSolidFill (edgeTable, destData, colour, replaceContents, (PixelRGB*) 0); break;
default: renderSolidFill (edgeTable, destData, colour, replaceContents, (PixelAlpha*) 0); break;
}
}
void fillAllWithGradient (Image::BitmapData& destData, ColourGradient& gradient, const AffineTransform& transform, bool isIdentity) const
{
HeapBlock <PixelARGB> lookupTable;
const int numLookupEntries = gradient.createLookupTable (transform, lookupTable);
jassert (numLookupEntries > 0);
switch (destData.pixelFormat)
{
case Image::ARGB: renderGradient (edgeTable, destData, gradient, transform, lookupTable, numLookupEntries, isIdentity, (PixelARGB*) 0); break;
case Image::RGB: renderGradient (edgeTable, destData, gradient, transform, lookupTable, numLookupEntries, isIdentity, (PixelRGB*) 0); break;
default: renderGradient (edgeTable, destData, gradient, transform, lookupTable, numLookupEntries, isIdentity, (PixelAlpha*) 0); break;
}
}
void renderImageTransformed (const Image::BitmapData& destData, const Image::BitmapData& srcData, const int alpha, const AffineTransform& transform, bool betterQuality, bool tiledFill) const
{
renderImageTransformedInternal (edgeTable, destData, srcData, alpha, transform, betterQuality, tiledFill);
}
void renderImageUntransformed (const Image::BitmapData& destData, const Image::BitmapData& srcData, const int alpha, int x, int y, bool tiledFill) const
{
renderImageUntransformedInternal (edgeTable, destData, srcData, alpha, x, y, tiledFill);
}
EdgeTable edgeTable;
private:
//==============================================================================
template <class SrcPixelType>
void transformedClipImage (const Image::BitmapData& srcData, const AffineTransform& transform, const bool betterQuality, const SrcPixelType*)
{
TransformedImageFillEdgeTableRenderer <SrcPixelType, SrcPixelType, false> renderer (srcData, srcData, transform, 255, betterQuality);
for (int y = 0; y < edgeTable.getMaximumBounds().getHeight(); ++y)
renderer.clipEdgeTableLine (edgeTable, edgeTable.getMaximumBounds().getX(), y + edgeTable.getMaximumBounds().getY(),
edgeTable.getMaximumBounds().getWidth());
}
template <class SrcPixelType>
void straightClipImage (const Image::BitmapData& srcData, int imageX, int imageY, const SrcPixelType*)
{
Rectangle<int> r (imageX, imageY, srcData.width, srcData.height);
edgeTable.clipToRectangle (r);
ImageFillEdgeTableRenderer <SrcPixelType, SrcPixelType, false> renderer (srcData, srcData, 255, imageX, imageY);
for (int y = 0; y < r.getHeight(); ++y)
renderer.clipEdgeTableLine (edgeTable, r.getX(), y + r.getY(), r.getWidth());
}
ClipRegion_EdgeTable& operator= (const ClipRegion_EdgeTable&);
};
//==============================================================================
class ClipRegion_RectangleList : public ClipRegionBase
{
public:
ClipRegion_RectangleList (const Rectangle<int>& r) : clip (r) {}
ClipRegion_RectangleList (const RectangleList& r) : clip (r) {}
ClipRegion_RectangleList (const ClipRegion_RectangleList& other) : clip (other.clip) {}
Ptr clone() const
{
return new ClipRegion_RectangleList (*this);
}
Ptr applyClipTo (const Ptr& target) const
{
return target->clipToRectangleList (clip);
}
Ptr clipToRectangle (const Rectangle<int>& r)
{
clip.clipTo (r);
return clip.isEmpty() ? nullptr : this;
}
Ptr clipToRectangleList (const RectangleList& r)
{
clip.clipTo (r);
return clip.isEmpty() ? nullptr : this;
}
Ptr excludeClipRectangle (const Rectangle<int>& r)
{
clip.subtract (r);
return clip.isEmpty() ? nullptr : this;
}
Ptr clipToPath (const Path& p, const AffineTransform& transform)
{
return toEdgeTable()->clipToPath (p, transform);
}
Ptr clipToEdgeTable (const EdgeTable& et)
{
return toEdgeTable()->clipToEdgeTable (et);
}
Ptr clipToImageAlpha (const Image& image, const AffineTransform& transform, const bool betterQuality)
{
return toEdgeTable()->clipToImageAlpha (image, transform, betterQuality);
}
Ptr translated (const Point<int>& delta)
{
clip.offsetAll (delta.getX(), delta.getY());
return clip.isEmpty() ? nullptr : this;
}
bool clipRegionIntersects (const Rectangle<int>& r) const
{
return clip.intersects (r);
}
Rectangle<int> getClipBounds() const
{
return clip.getBounds();
}
void fillRectWithColour (Image::BitmapData& destData, const Rectangle<int>& area, const PixelARGB& colour, bool replaceContents) const
{
SubRectangleIterator iter (clip, area);
switch (destData.pixelFormat)
{
case Image::ARGB: renderSolidFill (iter, destData, colour, replaceContents, (PixelARGB*) 0); break;
case Image::RGB: renderSolidFill (iter, destData, colour, replaceContents, (PixelRGB*) 0); break;
default: renderSolidFill (iter, destData, colour, replaceContents, (PixelAlpha*) 0); break;
}
}
void fillRectWithColour (Image::BitmapData& destData, const Rectangle<float>& area, const PixelARGB& colour) const
{
SubRectangleIteratorFloat iter (clip, area);
switch (destData.pixelFormat)
{
case Image::ARGB: renderSolidFill (iter, destData, colour, false, (PixelARGB*) 0); break;
case Image::RGB: renderSolidFill (iter, destData, colour, false, (PixelRGB*) 0); break;
default: renderSolidFill (iter, destData, colour, false, (PixelAlpha*) 0); break;
}
}
void fillAllWithColour (Image::BitmapData& destData, const PixelARGB& colour, bool replaceContents) const
{
switch (destData.pixelFormat)
{
case Image::ARGB: renderSolidFill (*this, destData, colour, replaceContents, (PixelARGB*) 0); break;
case Image::RGB: renderSolidFill (*this, destData, colour, replaceContents, (PixelRGB*) 0); break;
default: renderSolidFill (*this, destData, colour, replaceContents, (PixelAlpha*) 0); break;
}
}
void fillAllWithGradient (Image::BitmapData& destData, ColourGradient& gradient, const AffineTransform& transform, bool isIdentity) const
{
HeapBlock <PixelARGB> lookupTable;
const int numLookupEntries = gradient.createLookupTable (transform, lookupTable);
jassert (numLookupEntries > 0);
switch (destData.pixelFormat)
{
case Image::ARGB: renderGradient (*this, destData, gradient, transform, lookupTable, numLookupEntries, isIdentity, (PixelARGB*) 0); break;
case Image::RGB: renderGradient (*this, destData, gradient, transform, lookupTable, numLookupEntries, isIdentity, (PixelRGB*) 0); break;
default: renderGradient (*this, destData, gradient, transform, lookupTable, numLookupEntries, isIdentity, (PixelAlpha*) 0); break;
}
}
void renderImageTransformed (const Image::BitmapData& destData, const Image::BitmapData& srcData, const int alpha, const AffineTransform& transform, bool betterQuality, bool tiledFill) const
{
renderImageTransformedInternal (*this, destData, srcData, alpha, transform, betterQuality, tiledFill);
}
void renderImageUntransformed (const Image::BitmapData& destData, const Image::BitmapData& srcData, const int alpha, int x, int y, bool tiledFill) const
{
renderImageUntransformedInternal (*this, destData, srcData, alpha, x, y, tiledFill);
}
RectangleList clip;
//==============================================================================
template <class Renderer>
void iterate (Renderer& r) const noexcept
{
RectangleList::Iterator iter (clip);
while (iter.next())
{
const Rectangle<int> rect (*iter.getRectangle());
const int x = rect.getX();
const int w = rect.getWidth();
jassert (w > 0);
const int bottom = rect.getBottom();
for (int y = rect.getY(); y < bottom; ++y)
{
r.setEdgeTableYPos (y);
r.handleEdgeTableLineFull (x, w);
}
}
}
private:
//==============================================================================
class SubRectangleIterator
{
public:
SubRectangleIterator (const RectangleList& clip_, const Rectangle<int>& area_)
: clip (clip_), area (area_)
{
}
template <class Renderer>
void iterate (Renderer& r) const noexcept
{
RectangleList::Iterator iter (clip);
while (iter.next())
{
const Rectangle<int> rect (iter.getRectangle()->getIntersection (area));
if (! rect.isEmpty())
{
const int x = rect.getX();
const int w = rect.getWidth();
const int bottom = rect.getBottom();
for (int y = rect.getY(); y < bottom; ++y)
{
r.setEdgeTableYPos (y);
r.handleEdgeTableLineFull (x, w);
}
}
}
}
private:
const RectangleList& clip;
const Rectangle<int> area;
JUCE_DECLARE_NON_COPYABLE (SubRectangleIterator);
};
//==============================================================================
class SubRectangleIteratorFloat
{
public:
SubRectangleIteratorFloat (const RectangleList& clip_, const Rectangle<float>& area_) noexcept
: clip (clip_), area (area_)
{
}
template <class Renderer>
void iterate (Renderer& r) const noexcept
{
const RenderingHelpers::FloatRectangleRasterisingInfo f (area);
RectangleList::Iterator iter (clip);
while (iter.next())
{
const int clipLeft = iter.getRectangle()->getX();
const int clipRight = iter.getRectangle()->getRight();
const int clipTop = iter.getRectangle()->getY();
const int clipBottom = iter.getRectangle()->getBottom();
if (f.totalBottom > clipTop && f.totalTop < clipBottom && f.totalRight > clipLeft && f.totalLeft < clipRight)
{
if (f.isOnePixelWide())
{
if (f.topAlpha != 0 && f.totalTop >= clipTop)
{
r.setEdgeTableYPos (f.totalTop);
r.handleEdgeTablePixel (f.left, f.topAlpha);
}
const int endY = jmin (f.bottom, clipBottom);
for (int y = jmax (clipTop, f.top); y < endY; ++y)
{
r.setEdgeTableYPos (y);
r.handleEdgeTablePixelFull (f.left);
}
if (f.bottomAlpha != 0 && f.bottom < clipBottom)
{
r.setEdgeTableYPos (f.bottom);
r.handleEdgeTablePixel (f.left, f.bottomAlpha);
}
}
else
{
const int clippedLeft = jmax (f.left, clipLeft);
const int clippedWidth = jmin (f.right, clipRight) - clippedLeft;
const bool doLeftAlpha = f.leftAlpha != 0 && f.totalLeft >= clipLeft;
const bool doRightAlpha = f.rightAlpha != 0 && f.right < clipRight;
if (f.topAlpha != 0 && f.totalTop >= clipTop)
{
r.setEdgeTableYPos (f.totalTop);
if (doLeftAlpha) r.handleEdgeTablePixel (f.totalLeft, f.getTopLeftCornerAlpha());
if (clippedWidth > 0) r.handleEdgeTableLine (clippedLeft, clippedWidth, f.topAlpha);
if (doRightAlpha) r.handleEdgeTablePixel (f.right, f.getTopRightCornerAlpha());
}
const int endY = jmin (f.bottom, clipBottom);
for (int y = jmax (clipTop, f.top); y < endY; ++y)
{
r.setEdgeTableYPos (y);
if (doLeftAlpha) r.handleEdgeTablePixel (f.totalLeft, f.leftAlpha);
if (clippedWidth > 0) r.handleEdgeTableLineFull (clippedLeft, clippedWidth);
if (doRightAlpha) r.handleEdgeTablePixel (f.right, f.rightAlpha);
}
if (f.bottomAlpha != 0 && f.bottom < clipBottom)
{
r.setEdgeTableYPos (f.bottom);
if (doLeftAlpha) r.handleEdgeTablePixel (f.totalLeft, f.getBottomLeftCornerAlpha());
if (clippedWidth > 0) r.handleEdgeTableLine (clippedLeft, clippedWidth, f.bottomAlpha);
if (doRightAlpha) r.handleEdgeTablePixel (f.right, f.getBottomRightCornerAlpha());
}
}
}
}
}
private:
const RectangleList& clip;
const Rectangle<float>& area;
JUCE_DECLARE_NON_COPYABLE (SubRectangleIteratorFloat);
};
inline Ptr toEdgeTable() const { return new ClipRegion_EdgeTable (clip); }
ClipRegion_RectangleList& operator= (const ClipRegion_RectangleList&);
};
}
//==============================================================================
class LowLevelGraphicsSoftwareRenderer::SavedState
{
public:
SavedState (const Image& image_, const Rectangle<int>& clip_, const int xOffset_, const int yOffset_)
: image (image_), clip (new SoftwareRendererClasses::ClipRegion_RectangleList (clip_)),
transform (xOffset_, yOffset_),
interpolationQuality (Graphics::mediumResamplingQuality),
transparencyLayerAlpha (1.0f)
{
}
SavedState (const Image& image_, const RectangleList& clip_, const int xOffset_, const int yOffset_)
: image (image_), clip (new SoftwareRendererClasses::ClipRegion_RectangleList (clip_)),
transform (xOffset_, yOffset_),
interpolationQuality (Graphics::mediumResamplingQuality),
transparencyLayerAlpha (1.0f)
{
}
SavedState (const SavedState& other)
: image (other.image), clip (other.clip), transform (other.transform),
font (other.font), fillType (other.fillType),
interpolationQuality (other.interpolationQuality),
transparencyLayerAlpha (other.transparencyLayerAlpha)
{
}
bool clipToRectangle (const Rectangle<int>& r)
{
if (clip != nullptr)
{
if (transform.isOnlyTranslated)
{
cloneClipIfMultiplyReferenced();
clip = clip->clipToRectangle (transform.translated (r));
}
else
{
Path p;
p.addRectangle (r);
clipToPath (p, AffineTransform::identity);
}
}
return clip != nullptr;
}
bool clipToRectangleList (const RectangleList& r)
{
if (clip != nullptr)
{
if (transform.isOnlyTranslated)
{
cloneClipIfMultiplyReferenced();
RectangleList offsetList (r);
offsetList.offsetAll (transform.xOffset, transform.yOffset);
clip = clip->clipToRectangleList (offsetList);
}
else
{
clipToPath (r.toPath(), AffineTransform::identity);
}
}
return clip != nullptr;
}
bool excludeClipRectangle (const Rectangle<int>& r)
{
if (clip != nullptr)
{
cloneClipIfMultiplyReferenced();
if (transform.isOnlyTranslated)
{
clip = clip->excludeClipRectangle (transform.translated (r));
}
else
{
Path p;
p.addRectangle (r.toFloat());
p.applyTransform (transform.complexTransform);
p.addRectangle (clip->getClipBounds().toFloat());
p.setUsingNonZeroWinding (false);
clip = clip->clipToPath (p, AffineTransform::identity);
}
}
return clip != nullptr;
}
void clipToPath (const Path& p, const AffineTransform& t)
{
if (clip != nullptr)
{
cloneClipIfMultiplyReferenced();
clip = clip->clipToPath (p, transform.getTransformWith (t));
}
}
void clipToImageAlpha (const Image& sourceImage, const AffineTransform& t)
{
if (clip != nullptr)
{
if (sourceImage.hasAlphaChannel())
{
cloneClipIfMultiplyReferenced();
clip = clip->clipToImageAlpha (sourceImage, transform.getTransformWith (t),
interpolationQuality != Graphics::lowResamplingQuality);
}
else
{
Path p;
p.addRectangle (sourceImage.getBounds());
clipToPath (p, t);
}
}
}
bool clipRegionIntersects (const Rectangle<int>& r) const
{
if (clip != nullptr)
{
if (transform.isOnlyTranslated)
return clip->clipRegionIntersects (transform.translated (r));
else
return getClipBounds().intersects (r);
}
return false;
}
Rectangle<int> getUntransformedClipBounds() const
{
return clip != nullptr ? clip->getClipBounds()
: Rectangle<int>();
}
Rectangle<int> getClipBounds() const
{
return clip != nullptr ? transform.deviceSpaceToUserSpace (clip->getClipBounds())
: Rectangle<int>();
}
SavedState* beginTransparencyLayer (float opacity)
{
const Rectangle<int> layerBounds (getUntransformedClipBounds());
SavedState* s = new SavedState (*this);
s->image = Image (Image::ARGB, layerBounds.getWidth(), layerBounds.getHeight(), true);
s->transparencyLayerAlpha = opacity;
s->transform.moveOriginInDeviceSpace (-layerBounds.getX(), -layerBounds.getY());
s->cloneClipIfMultiplyReferenced();
s->clip = s->clip->translated (-layerBounds.getPosition());
return s;
}
void endTransparencyLayer (SavedState& finishedLayerState)
{
const Rectangle<int> layerBounds (getUntransformedClipBounds());
const ScopedPointer<LowLevelGraphicsContext> g (image.createLowLevelContext());
g->setOpacity (finishedLayerState.transparencyLayerAlpha);
g->drawImage (finishedLayerState.image, AffineTransform::translation ((float) layerBounds.getX(),
(float) layerBounds.getY()), false);
}
//==============================================================================
void fillRect (const Rectangle<int>& r, const bool replaceContents)
{
if (clip != nullptr)
{
if (transform.isOnlyTranslated)
{
if (fillType.isColour())
{
Image::BitmapData destData (image, Image::BitmapData::readWrite);
clip->fillRectWithColour (destData, transform.translated (r), fillType.colour.getPixelARGB(), replaceContents);
}
else
{
const Rectangle<int> totalClip (clip->getClipBounds());
const Rectangle<int> clipped (totalClip.getIntersection (transform.translated (r)));
if (! clipped.isEmpty())
fillShape (new SoftwareRendererClasses::ClipRegion_RectangleList (clipped), false);
}
}
else
{
Path p;
p.addRectangle (r);
fillPath (p, AffineTransform::identity);
}
}
}
void fillRect (const Rectangle<float>& r)
{
if (clip != nullptr)
{
if (transform.isOnlyTranslated)
{
if (fillType.isColour())
{
Image::BitmapData destData (image, Image::BitmapData::readWrite);
clip->fillRectWithColour (destData, transform.translated (r), fillType.colour.getPixelARGB());
}
else
{
const Rectangle<float> totalClip (clip->getClipBounds().toFloat());
const Rectangle<float> clipped (totalClip.getIntersection (transform.translated (r)));
if (! clipped.isEmpty())
fillShape (new SoftwareRendererClasses::ClipRegion_EdgeTable (clipped), false);
}
}
else
{
Path p;
p.addRectangle (r);
fillPath (p, AffineTransform::identity);
}
}
}
void fillPath (const Path& path, const AffineTransform& t)
{
if (clip != nullptr)
fillShape (new SoftwareRendererClasses::ClipRegion_EdgeTable (clip->getClipBounds(), path, transform.getTransformWith (t)), false);
}
void fillEdgeTable (const EdgeTable& edgeTable, const float x, const int y)
{
jassert (transform.isOnlyTranslated);
if (clip != nullptr)
{
SoftwareRendererClasses::ClipRegion_EdgeTable* edgeTableClip = new SoftwareRendererClasses::ClipRegion_EdgeTable (edgeTable);
edgeTableClip->edgeTable.translate (x + transform.xOffset,
y + transform.yOffset);
fillShape (edgeTableClip, false);
}
}
void drawGlyph (const Font& f, int glyphNumber, const AffineTransform& t)
{
if (clip != nullptr)
{
const ScopedPointer<EdgeTable> et (f.getTypeface()->getEdgeTableForGlyph (glyphNumber, transform.getTransformWith (t)));
if (et != nullptr)
fillShape (new SoftwareRendererClasses::ClipRegion_EdgeTable (*et), false);
}
}
void fillShape (SoftwareRendererClasses::ClipRegionBase::Ptr shapeToFill, const bool replaceContents)
{
jassert (clip != nullptr);
shapeToFill = clip->applyClipTo (shapeToFill);
if (shapeToFill != nullptr)
{
Image::BitmapData destData (image, Image::BitmapData::readWrite);
if (fillType.isGradient())
{
jassert (! replaceContents); // that option is just for solid colours
ColourGradient g2 (*(fillType.gradient));
g2.multiplyOpacity (fillType.getOpacity());
AffineTransform t (transform.getTransformWith (fillType.transform).translated (-0.5f, -0.5f));
const bool isIdentity = t.isOnlyTranslation();
if (isIdentity)
{
// If our translation doesn't involve any distortion, we can speed it up..
g2.point1.applyTransform (t);
g2.point2.applyTransform (t);
t = AffineTransform::identity;
}
shapeToFill->fillAllWithGradient (destData, g2, t, isIdentity);
}
else if (fillType.isTiledImage())
{
renderImage (fillType.image, fillType.transform, shapeToFill);
}
else
{
shapeToFill->fillAllWithColour (destData, fillType.colour.getPixelARGB(), replaceContents);
}
}
}
//==============================================================================
void renderImage (const Image& sourceImage, const AffineTransform& trans,
const SoftwareRendererClasses::ClipRegionBase* const tiledFillClipRegion)
{
const AffineTransform t (transform.getTransformWith (trans));
const Image::BitmapData destData (image, Image::BitmapData::readWrite);
const Image::BitmapData srcData (sourceImage, Image::BitmapData::readOnly);
const int alpha = fillType.colour.getAlpha();
const bool betterQuality = (interpolationQuality != Graphics::lowResamplingQuality);
if (t.isOnlyTranslation())
{
// If our translation doesn't involve any distortion, just use a simple blit..
int tx = (int) (t.getTranslationX() * 256.0f);
int ty = (int) (t.getTranslationY() * 256.0f);
if ((! betterQuality) || ((tx | ty) & 224) == 0)
{
tx = ((tx + 128) >> 8);
ty = ((ty + 128) >> 8);
if (tiledFillClipRegion != nullptr)
{
tiledFillClipRegion->renderImageUntransformed (destData, srcData, alpha, tx, ty, true);
}
else
{
Rectangle<int> area (tx, ty, sourceImage.getWidth(), sourceImage.getHeight());
area = area.getIntersection (image.getBounds());
if (! area.isEmpty())
{
SoftwareRendererClasses::ClipRegionBase::Ptr c (clip->applyClipTo (new SoftwareRendererClasses::ClipRegion_EdgeTable (area)));
if (c != nullptr)
c->renderImageUntransformed (destData, srcData, alpha, tx, ty, false);
}
}
return;
}
}
if (t.isSingularity())
return;
if (tiledFillClipRegion != nullptr)
{
tiledFillClipRegion->renderImageTransformed (destData, srcData, alpha, t, betterQuality, true);
}
else
{
Path p;
p.addRectangle (sourceImage.getBounds());
SoftwareRendererClasses::ClipRegionBase::Ptr c (clip->clone());
c = c->clipToPath (p, t);
if (c != nullptr)
c->renderImageTransformed (destData, srcData, alpha, t, betterQuality, false);
}
}
//==============================================================================
Image image;
SoftwareRendererClasses::ClipRegionBase::Ptr clip;
RenderingHelpers::TranslationOrTransform transform;
Font font;
FillType fillType;
Graphics::ResamplingQuality interpolationQuality;
private:
float transparencyLayerAlpha;
void cloneClipIfMultiplyReferenced()
{
if (clip->getReferenceCount() > 1)
clip = clip->clone();
}
SavedState& operator= (const SavedState&);
};
//==============================================================================
LowLevelGraphicsSoftwareRenderer::LowLevelGraphicsSoftwareRenderer (const Image& image)
: savedState (new SavedState (image, image.getBounds(), 0, 0))
{
}
LowLevelGraphicsSoftwareRenderer::LowLevelGraphicsSoftwareRenderer (const Image& image, const int xOffset, const int yOffset,
const RectangleList& initialClip)
: savedState (new SavedState (image, initialClip, xOffset, yOffset))
{
}
LowLevelGraphicsSoftwareRenderer::~LowLevelGraphicsSoftwareRenderer()
{
}
bool LowLevelGraphicsSoftwareRenderer::isVectorDevice() const
{
return false;
}
//==============================================================================
void LowLevelGraphicsSoftwareRenderer::setOrigin (int x, int y)
{
savedState->transform.setOrigin (x, y);
}
void LowLevelGraphicsSoftwareRenderer::addTransform (const AffineTransform& transform)
{
savedState->transform.addTransform (transform);
}
float LowLevelGraphicsSoftwareRenderer::getScaleFactor()
{
return savedState->transform.getScaleFactor();
}
bool LowLevelGraphicsSoftwareRenderer::clipToRectangle (const Rectangle<int>& r)
{
return savedState->clipToRectangle (r);
}
bool LowLevelGraphicsSoftwareRenderer::clipToRectangleList (const RectangleList& clipRegion)
{
return savedState->clipToRectangleList (clipRegion);
}
void LowLevelGraphicsSoftwareRenderer::excludeClipRectangle (const Rectangle<int>& r)
{
savedState->excludeClipRectangle (r);
}
void LowLevelGraphicsSoftwareRenderer::clipToPath (const Path& path, const AffineTransform& transform)
{
savedState->clipToPath (path, transform);
}
void LowLevelGraphicsSoftwareRenderer::clipToImageAlpha (const Image& sourceImage, const AffineTransform& transform)
{
savedState->clipToImageAlpha (sourceImage, transform);
}
bool LowLevelGraphicsSoftwareRenderer::clipRegionIntersects (const Rectangle<int>& r)
{
return savedState->clipRegionIntersects (r);
}
Rectangle<int> LowLevelGraphicsSoftwareRenderer::getClipBounds() const
{
return savedState->getClipBounds();
}
bool LowLevelGraphicsSoftwareRenderer::isClipEmpty() const
{
return savedState->clip == nullptr;
}
//==============================================================================
void LowLevelGraphicsSoftwareRenderer::saveState() { savedState.save(); }
void LowLevelGraphicsSoftwareRenderer::restoreState() { savedState.restore(); }
void LowLevelGraphicsSoftwareRenderer::beginTransparencyLayer (float opacity) { savedState.beginTransparencyLayer (opacity); }
void LowLevelGraphicsSoftwareRenderer::endTransparencyLayer() { savedState.endTransparencyLayer(); }
//==============================================================================
void LowLevelGraphicsSoftwareRenderer::setFill (const FillType& fillType)
{
savedState->fillType = fillType;
}
void LowLevelGraphicsSoftwareRenderer::setOpacity (float newOpacity)
{
savedState->fillType.setOpacity (newOpacity);
}
void LowLevelGraphicsSoftwareRenderer::setInterpolationQuality (Graphics::ResamplingQuality quality)
{
savedState->interpolationQuality = quality;
}
//==============================================================================
void LowLevelGraphicsSoftwareRenderer::fillRect (const Rectangle<int>& r, const bool replaceExistingContents)
{
savedState->fillRect (r, replaceExistingContents);
}
void LowLevelGraphicsSoftwareRenderer::fillPath (const Path& path, const AffineTransform& transform)
{
savedState->fillPath (path, transform);
}
void LowLevelGraphicsSoftwareRenderer::drawImage (const Image& sourceImage, const AffineTransform& transform, const bool fillEntireClipAsTiles)
{
savedState->renderImage (sourceImage, transform, fillEntireClipAsTiles ? savedState->clip : 0);
}
void LowLevelGraphicsSoftwareRenderer::drawLine (const Line <float>& line)
{
Path p;
p.addLineSegment (line, 1.0f);
fillPath (p, AffineTransform::identity);
}
void LowLevelGraphicsSoftwareRenderer::drawVerticalLine (const int x, float top, float bottom)
{
if (bottom > top)
savedState->fillRect (Rectangle<float> ((float) x, top, 1.0f, bottom - top));
}
void LowLevelGraphicsSoftwareRenderer::drawHorizontalLine (const int y, float left, float right)
{
if (right > left)
savedState->fillRect (Rectangle<float> (left, (float) y, right - left, 1.0f));
}
//==============================================================================
class CachedGlyphEdgeTable
{
public:
CachedGlyphEdgeTable() : glyph (0), lastAccessCount (0) {}
void draw (LowLevelGraphicsSoftwareRenderer::SavedState& state, float x, const float y) const
{
if (snapToIntegerCoordinate)
x = std::floor (x + 0.5f);
if (edgeTable != nullptr)
state.fillEdgeTable (*edgeTable, x, roundToInt (y));
}
void generate (const Font& newFont, const int glyphNumber)
{
font = newFont;
snapToIntegerCoordinate = newFont.getTypeface()->isHinted();
glyph = glyphNumber;
const float fontHeight = font.getHeight();
edgeTable = font.getTypeface()->getEdgeTableForGlyph (glyphNumber,
AffineTransform::scale (fontHeight * font.getHorizontalScale(), fontHeight)
#if JUCE_MAC || JUCE_IOS
.translated (0.0f, -0.5f)
#endif
);
}
Font font;
int glyph, lastAccessCount;
bool snapToIntegerCoordinate;
private:
ScopedPointer <EdgeTable> edgeTable;
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (CachedGlyphEdgeTable);
};
void LowLevelGraphicsSoftwareRenderer::drawGlyph (int glyphNumber, const AffineTransform& transform)
{
Font& f = savedState->font;
if (transform.isOnlyTranslation() && savedState->transform.isOnlyTranslated)
{
RenderingHelpers::GlyphCache <CachedGlyphEdgeTable, SavedState>::getInstance()
.drawGlyph (*savedState, f, glyphNumber,
transform.getTranslationX(),
transform.getTranslationY());
}
else
{
const float fontHeight = f.getHeight();
savedState->drawGlyph (f, glyphNumber,
AffineTransform::scale (fontHeight * f.getHorizontalScale(), fontHeight)
.followedBy (transform));
}
}
void LowLevelGraphicsSoftwareRenderer::setFont (const Font& newFont) { savedState->font = newFont; }
Font LowLevelGraphicsSoftwareRenderer::getFont() { return savedState->font; }
#if JUCE_MSVC
#pragma warning (pop)
#if JUCE_DEBUG
#pragma optimize ("", on) // resets optimisations to the project defaults
#endif
#endif
END_JUCE_NAMESPACE