1
0
Fork 0
mirror of https://github.com/juce-framework/JUCE.git synced 2026-01-10 23:44:24 +00:00
JUCE/modules/juce_audio_basics/sources/juce_ChannelRemappingAudioSource.h
2024-04-16 11:39:35 +01:00

153 lines
6.4 KiB
C++

/*
==============================================================================
This file is part of the JUCE framework.
Copyright (c) Raw Material Software Limited
JUCE is an open source framework subject to commercial or open source
licensing.
By downloading, installing, or using the JUCE framework, or combining the
JUCE framework with any other source code, object code, content or any other
copyrightable work, you agree to the terms of the JUCE End User Licence
Agreement, and all incorporated terms including the JUCE Privacy Policy and
the JUCE Website Terms of Service, as applicable, which will bind you. If you
do not agree to the terms of these agreements, we will not license the JUCE
framework to you, and you must discontinue the installation or download
process and cease use of the JUCE framework.
JUCE End User Licence Agreement: https://juce.com/legal/juce-8-licence/
JUCE Privacy Policy: https://juce.com/juce-privacy-policy
JUCE Website Terms of Service: https://juce.com/juce-website-terms-of-service/
Or:
You may also use this code under the terms of the AGPLv3:
https://www.gnu.org/licenses/agpl-3.0.en.html
THE JUCE FRAMEWORK IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL
WARRANTIES, WHETHER EXPRESSED OR IMPLIED, INCLUDING WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
An AudioSource that takes the audio from another source, and re-maps its
input and output channels to a different arrangement.
You can use this to increase or decrease the number of channels that an
audio source uses, or to re-order those channels.
Call the reset() method before using it to set up a default mapping, and then
the setInputChannelMapping() and setOutputChannelMapping() methods to
create an appropriate mapping, otherwise no channels will be connected and
it'll produce silence.
@see AudioSource
@tags{Audio}
*/
class ChannelRemappingAudioSource : public AudioSource
{
public:
//==============================================================================
/** Creates a remapping source that will pass on audio from the given input.
@param source the input source to use. Make sure that this doesn't
get deleted before the ChannelRemappingAudioSource object
@param deleteSourceWhenDeleted if true, the input source will be deleted
when this object is deleted, if false, the caller is
responsible for its deletion
*/
ChannelRemappingAudioSource (AudioSource* source,
bool deleteSourceWhenDeleted);
/** Destructor. */
~ChannelRemappingAudioSource() override;
//==============================================================================
/** Specifies a number of channels that this audio source must produce from its
getNextAudioBlock() callback.
*/
void setNumberOfChannelsToProduce (int requiredNumberOfChannels);
/** Clears any mapped channels.
After this, no channels are mapped, so this object will produce silence. Create
some mappings with setInputChannelMapping() and setOutputChannelMapping().
*/
void clearAllMappings();
/** Creates an input channel mapping.
When the getNextAudioBlock() method is called, the data in channel sourceChannelIndex of the incoming
data will be sent to destChannelIndex of our input source.
@param destChannelIndex the index of an input channel in our input audio source (i.e. the
source specified when this object was created).
@param sourceChannelIndex the index of the input channel in the incoming audio data buffer
during our getNextAudioBlock() callback
*/
void setInputChannelMapping (int destChannelIndex,
int sourceChannelIndex);
/** Creates an output channel mapping.
When the getNextAudioBlock() method is called, the data returned in channel sourceChannelIndex by
our input audio source will be copied to channel destChannelIndex of the final buffer.
@param sourceChannelIndex the index of an output channel coming from our input audio source
(i.e. the source specified when this object was created).
@param destChannelIndex the index of the output channel in the incoming audio data buffer
during our getNextAudioBlock() callback
*/
void setOutputChannelMapping (int sourceChannelIndex,
int destChannelIndex);
/** Returns the channel from our input that will be sent to channel inputChannelIndex of
our input audio source.
*/
int getRemappedInputChannel (int inputChannelIndex) const;
/** Returns the output channel to which channel outputChannelIndex of our input audio
source will be sent to.
*/
int getRemappedOutputChannel (int outputChannelIndex) const;
//==============================================================================
/** Returns an XML object to encapsulate the state of the mappings.
@see restoreFromXml
*/
std::unique_ptr<XmlElement> createXml() const;
/** Restores the mappings from an XML object created by createXML().
@see createXml
*/
void restoreFromXml (const XmlElement&);
//==============================================================================
void prepareToPlay (int samplesPerBlockExpected, double sampleRate) override;
void releaseResources() override;
void getNextAudioBlock (const AudioSourceChannelInfo&) override;
private:
//==============================================================================
OptionalScopedPointer<AudioSource> source;
Array<int> remappedInputs, remappedOutputs;
int requiredNumberOfChannels;
AudioBuffer<float> buffer;
AudioSourceChannelInfo remappedInfo;
CriticalSection lock;
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (ChannelRemappingAudioSource)
};
} // namespace juce