1
0
Fork 0
mirror of https://github.com/juce-framework/JUCE.git synced 2026-01-19 01:04:20 +00:00
JUCE/src/native/windows/juce_win32_AudioCDReader.cpp

2408 lines
75 KiB
C++

/*
==============================================================================
This file is part of the JUCE library - "Jules' Utility Class Extensions"
Copyright 2004-10 by Raw Material Software Ltd.
------------------------------------------------------------------------------
JUCE can be redistributed and/or modified under the terms of the GNU General
Public License (Version 2), as published by the Free Software Foundation.
A copy of the license is included in the JUCE distribution, or can be found
online at www.gnu.org/licenses.
JUCE is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
------------------------------------------------------------------------------
To release a closed-source product which uses JUCE, commercial licenses are
available: visit www.rawmaterialsoftware.com/juce for more information.
==============================================================================
*/
// (This file gets included by juce_win32_NativeCode.cpp, rather than being
// compiled on its own).
#if JUCE_INCLUDED_FILE
#if JUCE_USE_CDREADER
namespace CDReaderHelpers
{
//***************************************************************************
// %%% TARGET STATUS VALUES %%%
//***************************************************************************
#define STATUS_GOOD 0x00 // Status Good
#define STATUS_CHKCOND 0x02 // Check Condition
#define STATUS_CONDMET 0x04 // Condition Met
#define STATUS_BUSY 0x08 // Busy
#define STATUS_INTERM 0x10 // Intermediate
#define STATUS_INTCDMET 0x14 // Intermediate-condition met
#define STATUS_RESCONF 0x18 // Reservation conflict
#define STATUS_COMTERM 0x22 // Command Terminated
#define STATUS_QFULL 0x28 // Queue full
//***************************************************************************
// %%% SCSI MISCELLANEOUS EQUATES %%%
//***************************************************************************
#define MAXLUN 7 // Maximum Logical Unit Id
#define MAXTARG 7 // Maximum Target Id
#define MAX_SCSI_LUNS 64 // Maximum Number of SCSI LUNs
#define MAX_NUM_HA 8 // Maximum Number of SCSI HA's
//***************************************************************************
// %%% Commands for all Device Types %%%
//***************************************************************************
#define SCSI_CHANGE_DEF 0x40 // Change Definition (Optional)
#define SCSI_COMPARE 0x39 // Compare (O)
#define SCSI_COPY 0x18 // Copy (O)
#define SCSI_COP_VERIFY 0x3A // Copy and Verify (O)
#define SCSI_INQUIRY 0x12 // Inquiry (MANDATORY)
#define SCSI_LOG_SELECT 0x4C // Log Select (O)
#define SCSI_LOG_SENSE 0x4D // Log Sense (O)
#define SCSI_MODE_SEL6 0x15 // Mode Select 6-byte (Device Specific)
#define SCSI_MODE_SEL10 0x55 // Mode Select 10-byte (Device Specific)
#define SCSI_MODE_SEN6 0x1A // Mode Sense 6-byte (Device Specific)
#define SCSI_MODE_SEN10 0x5A // Mode Sense 10-byte (Device Specific)
#define SCSI_READ_BUFF 0x3C // Read Buffer (O)
#define SCSI_REQ_SENSE 0x03 // Request Sense (MANDATORY)
#define SCSI_SEND_DIAG 0x1D // Send Diagnostic (O)
#define SCSI_TST_U_RDY 0x00 // Test Unit Ready (MANDATORY)
#define SCSI_WRITE_BUFF 0x3B // Write Buffer (O)
//***************************************************************************
// %%% Commands Unique to Direct Access Devices %%%
//***************************************************************************
#define SCSI_COMPARE 0x39 // Compare (O)
#define SCSI_FORMAT 0x04 // Format Unit (MANDATORY)
#define SCSI_LCK_UN_CAC 0x36 // Lock Unlock Cache (O)
#define SCSI_PREFETCH 0x34 // Prefetch (O)
#define SCSI_MED_REMOVL 0x1E // Prevent/Allow medium Removal (O)
#define SCSI_READ6 0x08 // Read 6-byte (MANDATORY)
#define SCSI_READ10 0x28 // Read 10-byte (MANDATORY)
#define SCSI_RD_CAPAC 0x25 // Read Capacity (MANDATORY)
#define SCSI_RD_DEFECT 0x37 // Read Defect Data (O)
#define SCSI_READ_LONG 0x3E // Read Long (O)
#define SCSI_REASS_BLK 0x07 // Reassign Blocks (O)
#define SCSI_RCV_DIAG 0x1C // Receive Diagnostic Results (O)
#define SCSI_RELEASE 0x17 // Release Unit (MANDATORY)
#define SCSI_REZERO 0x01 // Rezero Unit (O)
#define SCSI_SRCH_DAT_E 0x31 // Search Data Equal (O)
#define SCSI_SRCH_DAT_H 0x30 // Search Data High (O)
#define SCSI_SRCH_DAT_L 0x32 // Search Data Low (O)
#define SCSI_SEEK6 0x0B // Seek 6-Byte (O)
#define SCSI_SEEK10 0x2B // Seek 10-Byte (O)
#define SCSI_SEND_DIAG 0x1D // Send Diagnostics (MANDATORY)
#define SCSI_SET_LIMIT 0x33 // Set Limits (O)
#define SCSI_START_STP 0x1B // Start/Stop Unit (O)
#define SCSI_SYNC_CACHE 0x35 // Synchronize Cache (O)
#define SCSI_VERIFY 0x2F // Verify (O)
#define SCSI_WRITE6 0x0A // Write 6-Byte (MANDATORY)
#define SCSI_WRITE10 0x2A // Write 10-Byte (MANDATORY)
#define SCSI_WRT_VERIFY 0x2E // Write and Verify (O)
#define SCSI_WRITE_LONG 0x3F // Write Long (O)
#define SCSI_WRITE_SAME 0x41 // Write Same (O)
//***************************************************************************
// %%% Commands Unique to Sequential Access Devices %%%
//***************************************************************************
#define SCSI_ERASE 0x19 // Erase (MANDATORY)
#define SCSI_LOAD_UN 0x1b // Load/Unload (O)
#define SCSI_LOCATE 0x2B // Locate (O)
#define SCSI_RD_BLK_LIM 0x05 // Read Block Limits (MANDATORY)
#define SCSI_READ_POS 0x34 // Read Position (O)
#define SCSI_READ_REV 0x0F // Read Reverse (O)
#define SCSI_REC_BF_DAT 0x14 // Recover Buffer Data (O)
#define SCSI_RESERVE 0x16 // Reserve Unit (MANDATORY)
#define SCSI_REWIND 0x01 // Rewind (MANDATORY)
#define SCSI_SPACE 0x11 // Space (MANDATORY)
#define SCSI_VERIFY_T 0x13 // Verify (Tape) (O)
#define SCSI_WRT_FILE 0x10 // Write Filemarks (MANDATORY)
//***************************************************************************
// %%% Commands Unique to Printer Devices %%%
//***************************************************************************
#define SCSI_PRINT 0x0A // Print (MANDATORY)
#define SCSI_SLEW_PNT 0x0B // Slew and Print (O)
#define SCSI_STOP_PNT 0x1B // Stop Print (O)
#define SCSI_SYNC_BUFF 0x10 // Synchronize Buffer (O)
//***************************************************************************
// %%% Commands Unique to Processor Devices %%%
//***************************************************************************
#define SCSI_RECEIVE 0x08 // Receive (O)
#define SCSI_SEND 0x0A // Send (O)
//***************************************************************************
// %%% Commands Unique to Write-Once Devices %%%
//***************************************************************************
#define SCSI_MEDIUM_SCN 0x38 // Medium Scan (O)
#define SCSI_SRCHDATE10 0x31 // Search Data Equal 10-Byte (O)
#define SCSI_SRCHDATE12 0xB1 // Search Data Equal 12-Byte (O)
#define SCSI_SRCHDATH10 0x30 // Search Data High 10-Byte (O)
#define SCSI_SRCHDATH12 0xB0 // Search Data High 12-Byte (O)
#define SCSI_SRCHDATL10 0x32 // Search Data Low 10-Byte (O)
#define SCSI_SRCHDATL12 0xB2 // Search Data Low 12-Byte (O)
#define SCSI_SET_LIM_10 0x33 // Set Limits 10-Byte (O)
#define SCSI_SET_LIM_12 0xB3 // Set Limits 10-Byte (O)
#define SCSI_VERIFY10 0x2F // Verify 10-Byte (O)
#define SCSI_VERIFY12 0xAF // Verify 12-Byte (O)
#define SCSI_WRITE12 0xAA // Write 12-Byte (O)
#define SCSI_WRT_VER10 0x2E // Write and Verify 10-Byte (O)
#define SCSI_WRT_VER12 0xAE // Write and Verify 12-Byte (O)
//***************************************************************************
// %%% Commands Unique to CD-ROM Devices %%%
//***************************************************************************
#define SCSI_PLAYAUD_10 0x45 // Play Audio 10-Byte (O)
#define SCSI_PLAYAUD_12 0xA5 // Play Audio 12-Byte 12-Byte (O)
#define SCSI_PLAYAUDMSF 0x47 // Play Audio MSF (O)
#define SCSI_PLAYA_TKIN 0x48 // Play Audio Track/Index (O)
#define SCSI_PLYTKREL10 0x49 // Play Track Relative 10-Byte (O)
#define SCSI_PLYTKREL12 0xA9 // Play Track Relative 12-Byte (O)
#define SCSI_READCDCAP 0x25 // Read CD-ROM Capacity (MANDATORY)
#define SCSI_READHEADER 0x44 // Read Header (O)
#define SCSI_SUBCHANNEL 0x42 // Read Subchannel (O)
#define SCSI_READ_TOC 0x43 // Read TOC (O)
//***************************************************************************
// %%% Commands Unique to Scanner Devices %%%
//***************************************************************************
#define SCSI_GETDBSTAT 0x34 // Get Data Buffer Status (O)
#define SCSI_GETWINDOW 0x25 // Get Window (O)
#define SCSI_OBJECTPOS 0x31 // Object Postion (O)
#define SCSI_SCAN 0x1B // Scan (O)
#define SCSI_SETWINDOW 0x24 // Set Window (MANDATORY)
//***************************************************************************
// %%% Commands Unique to Optical Memory Devices %%%
//***************************************************************************
#define SCSI_UpdateBlk 0x3D // Update Block (O)
//***************************************************************************
// %%% Commands Unique to Medium Changer Devices %%%
//***************************************************************************
#define SCSI_EXCHMEDIUM 0xA6 // Exchange Medium (O)
#define SCSI_INITELSTAT 0x07 // Initialize Element Status (O)
#define SCSI_POSTOELEM 0x2B // Position to Element (O)
#define SCSI_REQ_VE_ADD 0xB5 // Request Volume Element Address (O)
#define SCSI_SENDVOLTAG 0xB6 // Send Volume Tag (O)
//***************************************************************************
// %%% Commands Unique to Communication Devices %%%
//***************************************************************************
#define SCSI_GET_MSG_6 0x08 // Get Message 6-Byte (MANDATORY)
#define SCSI_GET_MSG_10 0x28 // Get Message 10-Byte (O)
#define SCSI_GET_MSG_12 0xA8 // Get Message 12-Byte (O)
#define SCSI_SND_MSG_6 0x0A // Send Message 6-Byte (MANDATORY)
#define SCSI_SND_MSG_10 0x2A // Send Message 10-Byte (O)
#define SCSI_SND_MSG_12 0xAA // Send Message 12-Byte (O)
//***************************************************************************
// %%% Request Sense Data Format %%%
//***************************************************************************
typedef struct {
BYTE ErrorCode; // Error Code (70H or 71H)
BYTE SegmentNum; // Number of current segment descriptor
BYTE SenseKey; // Sense Key(See bit definitions too)
BYTE InfoByte0; // Information MSB
BYTE InfoByte1; // Information MID
BYTE InfoByte2; // Information MID
BYTE InfoByte3; // Information LSB
BYTE AddSenLen; // Additional Sense Length
BYTE ComSpecInf0; // Command Specific Information MSB
BYTE ComSpecInf1; // Command Specific Information MID
BYTE ComSpecInf2; // Command Specific Information MID
BYTE ComSpecInf3; // Command Specific Information LSB
BYTE AddSenseCode; // Additional Sense Code
BYTE AddSenQual; // Additional Sense Code Qualifier
BYTE FieldRepUCode; // Field Replaceable Unit Code
BYTE SenKeySpec15; // Sense Key Specific 15th byte
BYTE SenKeySpec16; // Sense Key Specific 16th byte
BYTE SenKeySpec17; // Sense Key Specific 17th byte
BYTE AddSenseBytes; // Additional Sense Bytes
} SENSE_DATA_FMT;
//***************************************************************************
// %%% REQUEST SENSE ERROR CODE %%%
//***************************************************************************
#define SERROR_CURRENT 0x70 // Current Errors
#define SERROR_DEFERED 0x71 // Deferred Errors
//***************************************************************************
// %%% REQUEST SENSE BIT DEFINITIONS %%%
//***************************************************************************
#define SENSE_VALID 0x80 // Byte 0 Bit 7
#define SENSE_FILEMRK 0x80 // Byte 2 Bit 7
#define SENSE_EOM 0x40 // Byte 2 Bit 6
#define SENSE_ILI 0x20 // Byte 2 Bit 5
//***************************************************************************
// %%% REQUEST SENSE SENSE KEY DEFINITIONS %%%
//***************************************************************************
#define KEY_NOSENSE 0x00 // No Sense
#define KEY_RECERROR 0x01 // Recovered Error
#define KEY_NOTREADY 0x02 // Not Ready
#define KEY_MEDIUMERR 0x03 // Medium Error
#define KEY_HARDERROR 0x04 // Hardware Error
#define KEY_ILLGLREQ 0x05 // Illegal Request
#define KEY_UNITATT 0x06 // Unit Attention
#define KEY_DATAPROT 0x07 // Data Protect
#define KEY_BLANKCHK 0x08 // Blank Check
#define KEY_VENDSPEC 0x09 // Vendor Specific
#define KEY_COPYABORT 0x0A // Copy Abort
#define KEY_EQUAL 0x0C // Equal (Search)
#define KEY_VOLOVRFLW 0x0D // Volume Overflow
#define KEY_MISCOMP 0x0E // Miscompare (Search)
#define KEY_RESERVED 0x0F // Reserved
//***************************************************************************
// %%% PERIPHERAL DEVICE TYPE DEFINITIONS %%%
//***************************************************************************
#define DTYPE_DASD 0x00 // Disk Device
#define DTYPE_SEQD 0x01 // Tape Device
#define DTYPE_PRNT 0x02 // Printer
#define DTYPE_PROC 0x03 // Processor
#define DTYPE_WORM 0x04 // Write-once read-multiple
#define DTYPE_CROM 0x05 // CD-ROM device
#define DTYPE_SCAN 0x06 // Scanner device
#define DTYPE_OPTI 0x07 // Optical memory device
#define DTYPE_JUKE 0x08 // Medium Changer device
#define DTYPE_COMM 0x09 // Communications device
#define DTYPE_RESL 0x0A // Reserved (low)
#define DTYPE_RESH 0x1E // Reserved (high)
#define DTYPE_UNKNOWN 0x1F // Unknown or no device type
//***************************************************************************
// %%% ANSI APPROVED VERSION DEFINITIONS %%%
//***************************************************************************
#define ANSI_MAYBE 0x0 // Device may or may not be ANSI approved stand
#define ANSI_SCSI1 0x1 // Device complies to ANSI X3.131-1986 (SCSI-1)
#define ANSI_SCSI2 0x2 // Device complies to SCSI-2
#define ANSI_RESLO 0x3 // Reserved (low)
#define ANSI_RESHI 0x7 // Reserved (high)
typedef struct
{
USHORT Length;
UCHAR ScsiStatus;
UCHAR PathId;
UCHAR TargetId;
UCHAR Lun;
UCHAR CdbLength;
UCHAR SenseInfoLength;
UCHAR DataIn;
ULONG DataTransferLength;
ULONG TimeOutValue;
ULONG DataBufferOffset;
ULONG SenseInfoOffset;
UCHAR Cdb[16];
} SCSI_PASS_THROUGH, *PSCSI_PASS_THROUGH;
typedef struct
{
USHORT Length;
UCHAR ScsiStatus;
UCHAR PathId;
UCHAR TargetId;
UCHAR Lun;
UCHAR CdbLength;
UCHAR SenseInfoLength;
UCHAR DataIn;
ULONG DataTransferLength;
ULONG TimeOutValue;
PVOID DataBuffer;
ULONG SenseInfoOffset;
UCHAR Cdb[16];
} SCSI_PASS_THROUGH_DIRECT, *PSCSI_PASS_THROUGH_DIRECT;
typedef struct
{
SCSI_PASS_THROUGH_DIRECT spt;
ULONG Filler;
UCHAR ucSenseBuf[32];
} SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER, *PSCSI_PASS_THROUGH_DIRECT_WITH_BUFFER;
typedef struct
{
ULONG Length;
UCHAR PortNumber;
UCHAR PathId;
UCHAR TargetId;
UCHAR Lun;
} SCSI_ADDRESS, *PSCSI_ADDRESS;
#define METHOD_BUFFERED 0
#define METHOD_IN_DIRECT 1
#define METHOD_OUT_DIRECT 2
#define METHOD_NEITHER 3
#define FILE_ANY_ACCESS 0
#ifndef FILE_READ_ACCESS
#define FILE_READ_ACCESS (0x0001)
#endif
#ifndef FILE_WRITE_ACCESS
#define FILE_WRITE_ACCESS (0x0002)
#endif
#define IOCTL_SCSI_BASE 0x00000004
#define SCSI_IOCTL_DATA_OUT 0
#define SCSI_IOCTL_DATA_IN 1
#define SCSI_IOCTL_DATA_UNSPECIFIED 2
#define CTL_CODE2( DevType, Function, Method, Access ) ( \
((DevType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method) \
)
#define IOCTL_SCSI_PASS_THROUGH CTL_CODE2( IOCTL_SCSI_BASE, 0x0401, METHOD_BUFFERED, FILE_READ_ACCESS | FILE_WRITE_ACCESS )
#define IOCTL_SCSI_GET_CAPABILITIES CTL_CODE2( IOCTL_SCSI_BASE, 0x0404, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_SCSI_PASS_THROUGH_DIRECT CTL_CODE2( IOCTL_SCSI_BASE, 0x0405, METHOD_BUFFERED, FILE_READ_ACCESS | FILE_WRITE_ACCESS )
#define IOCTL_SCSI_GET_ADDRESS CTL_CODE2( IOCTL_SCSI_BASE, 0x0406, METHOD_BUFFERED, FILE_ANY_ACCESS )
#define SENSE_LEN 14
#define SRB_DIR_SCSI 0x00
#define SRB_POSTING 0x01
#define SRB_ENABLE_RESIDUAL_COUNT 0x04
#define SRB_DIR_IN 0x08
#define SRB_DIR_OUT 0x10
#define SRB_EVENT_NOTIFY 0x40
#define RESIDUAL_COUNT_SUPPORTED 0x02
#define MAX_SRB_TIMEOUT 1080001u
#define DEFAULT_SRB_TIMEOUT 1080001u
#define SC_HA_INQUIRY 0x00
#define SC_GET_DEV_TYPE 0x01
#define SC_EXEC_SCSI_CMD 0x02
#define SC_ABORT_SRB 0x03
#define SC_RESET_DEV 0x04
#define SC_SET_HA_PARMS 0x05
#define SC_GET_DISK_INFO 0x06
#define SC_RESCAN_SCSI_BUS 0x07
#define SC_GETSET_TIMEOUTS 0x08
#define SS_PENDING 0x00
#define SS_COMP 0x01
#define SS_ABORTED 0x02
#define SS_ABORT_FAIL 0x03
#define SS_ERR 0x04
#define SS_INVALID_CMD 0x80
#define SS_INVALID_HA 0x81
#define SS_NO_DEVICE 0x82
#define SS_INVALID_SRB 0xE0
#define SS_OLD_MANAGER 0xE1
#define SS_BUFFER_ALIGN 0xE1
#define SS_ILLEGAL_MODE 0xE2
#define SS_NO_ASPI 0xE3
#define SS_FAILED_INIT 0xE4
#define SS_ASPI_IS_BUSY 0xE5
#define SS_BUFFER_TO_BIG 0xE6
#define SS_BUFFER_TOO_BIG 0xE6
#define SS_MISMATCHED_COMPONENTS 0xE7
#define SS_NO_ADAPTERS 0xE8
#define SS_INSUFFICIENT_RESOURCES 0xE9
#define SS_ASPI_IS_SHUTDOWN 0xEA
#define SS_BAD_INSTALL 0xEB
#define HASTAT_OK 0x00
#define HASTAT_SEL_TO 0x11
#define HASTAT_DO_DU 0x12
#define HASTAT_BUS_FREE 0x13
#define HASTAT_PHASE_ERR 0x14
#define HASTAT_TIMEOUT 0x09
#define HASTAT_COMMAND_TIMEOUT 0x0B
#define HASTAT_MESSAGE_REJECT 0x0D
#define HASTAT_BUS_RESET 0x0E
#define HASTAT_PARITY_ERROR 0x0F
#define HASTAT_REQUEST_SENSE_FAILED 0x10
#define PACKED
#pragma pack(1)
typedef struct
{
BYTE SRB_Cmd;
BYTE SRB_Status;
BYTE SRB_HaID;
BYTE SRB_Flags;
DWORD SRB_Hdr_Rsvd;
BYTE HA_Count;
BYTE HA_SCSI_ID;
BYTE HA_ManagerId[16];
BYTE HA_Identifier[16];
BYTE HA_Unique[16];
WORD HA_Rsvd1;
BYTE pad[20];
} PACKED SRB_HAInquiry, *PSRB_HAInquiry, FAR *LPSRB_HAInquiry;
typedef struct
{
BYTE SRB_Cmd;
BYTE SRB_Status;
BYTE SRB_HaID;
BYTE SRB_Flags;
DWORD SRB_Hdr_Rsvd;
BYTE SRB_Target;
BYTE SRB_Lun;
BYTE SRB_DeviceType;
BYTE SRB_Rsvd1;
BYTE pad[68];
} PACKED SRB_GDEVBlock, *PSRB_GDEVBlock, FAR *LPSRB_GDEVBlock;
typedef struct
{
BYTE SRB_Cmd;
BYTE SRB_Status;
BYTE SRB_HaID;
BYTE SRB_Flags;
DWORD SRB_Hdr_Rsvd;
BYTE SRB_Target;
BYTE SRB_Lun;
WORD SRB_Rsvd1;
DWORD SRB_BufLen;
BYTE FAR *SRB_BufPointer;
BYTE SRB_SenseLen;
BYTE SRB_CDBLen;
BYTE SRB_HaStat;
BYTE SRB_TargStat;
VOID FAR *SRB_PostProc;
BYTE SRB_Rsvd2[20];
BYTE CDBByte[16];
BYTE SenseArea[SENSE_LEN+2];
} PACKED SRB_ExecSCSICmd, *PSRB_ExecSCSICmd, FAR *LPSRB_ExecSCSICmd;
typedef struct
{
BYTE SRB_Cmd;
BYTE SRB_Status;
BYTE SRB_HaId;
BYTE SRB_Flags;
DWORD SRB_Hdr_Rsvd;
} PACKED SRB, *PSRB, FAR *LPSRB;
#pragma pack()
//==============================================================================
struct CDDeviceInfo
{
char vendor[9];
char productId[17];
char rev[5];
char vendorSpec[21];
BYTE ha;
BYTE tgt;
BYTE lun;
char scsiDriveLetter; // will be 0 if not using scsi
};
//==============================================================================
class CDReadBuffer
{
public:
int startFrame;
int numFrames;
int dataStartOffset;
int dataLength;
int bufferSize;
HeapBlock<BYTE> buffer;
int index;
bool wantsIndex;
//==============================================================================
CDReadBuffer (const int numberOfFrames)
: startFrame (0),
numFrames (0),
dataStartOffset (0),
dataLength (0),
bufferSize (2352 * numberOfFrames),
buffer (bufferSize),
index (0),
wantsIndex (false)
{
}
bool isZero() const throw()
{
BYTE* p = buffer + dataStartOffset;
for (int i = dataLength; --i >= 0;)
if (*p++ != 0)
return false;
return true;
}
};
class CDDeviceHandle;
class CDController
{
public:
CDController();
virtual ~CDController();
virtual bool read (CDReadBuffer* t) = 0;
virtual void shutDown();
bool readAudio (CDReadBuffer* t, CDReadBuffer* overlapBuffer = 0);
int getLastIndex();
public:
bool initialised;
CDDeviceHandle* deviceInfo;
int framesToCheck, framesOverlap;
void prepare (SRB_ExecSCSICmd& s);
void perform (SRB_ExecSCSICmd& s);
void setPaused (bool paused);
};
//==============================================================================
#pragma pack(1)
struct TOCTRACK
{
BYTE rsvd;
BYTE ADR;
BYTE trackNumber;
BYTE rsvd2;
BYTE addr[4];
};
struct TOC
{
WORD tocLen;
BYTE firstTrack;
BYTE lastTrack;
TOCTRACK tracks[100];
};
#pragma pack()
enum
{
READTYPE_ANY = 0,
READTYPE_ATAPI1 = 1,
READTYPE_ATAPI2 = 2,
READTYPE_READ6 = 3,
READTYPE_READ10 = 4,
READTYPE_READ_D8 = 5,
READTYPE_READ_D4 = 6,
READTYPE_READ_D4_1 = 7,
READTYPE_READ10_2 = 8
};
//==============================================================================
class CDDeviceHandle
{
public:
CDDeviceHandle (const CDDeviceInfo* const device)
: scsiHandle (0),
readType (READTYPE_ANY),
controller (0)
{
memcpy (&info, device, sizeof (info));
}
~CDDeviceHandle()
{
if (controller != 0)
{
controller->shutDown();
controller = 0;
}
if (scsiHandle != 0)
CloseHandle (scsiHandle);
}
bool readTOC (TOC* lpToc);
bool readAudio (CDReadBuffer* buffer, CDReadBuffer* overlapBuffer = 0);
void openDrawer (bool shouldBeOpen);
CDDeviceInfo info;
HANDLE scsiHandle;
BYTE readType;
private:
ScopedPointer<CDController> controller;
bool testController (const int readType,
CDController* const newController,
CDReadBuffer* const bufferToUse);
};
//==============================================================================
DWORD (*fGetASPI32SupportInfo)(void);
DWORD (*fSendASPI32Command)(LPSRB);
//==============================================================================
static HINSTANCE winAspiLib = 0;
static bool usingScsi = false;
static bool initialised = false;
bool InitialiseCDRipper()
{
if (! initialised)
{
initialised = true;
OSVERSIONINFO info;
info.dwOSVersionInfoSize = sizeof (info);
GetVersionEx (&info);
usingScsi = (info.dwPlatformId == VER_PLATFORM_WIN32_NT) && (info.dwMajorVersion > 4);
if (! usingScsi)
{
fGetASPI32SupportInfo = 0;
fSendASPI32Command = 0;
winAspiLib = LoadLibrary (_T("WNASPI32.DLL"));
if (winAspiLib != 0)
{
fGetASPI32SupportInfo = (DWORD(*)(void)) GetProcAddress (winAspiLib, "GetASPI32SupportInfo");
fSendASPI32Command = (DWORD(*)(LPSRB)) GetProcAddress (winAspiLib, "SendASPI32Command");
if (fGetASPI32SupportInfo == 0 || fSendASPI32Command == 0)
return false;
}
else
{
usingScsi = true;
}
}
}
return true;
}
void DeinitialiseCDRipper()
{
if (winAspiLib != 0)
{
fGetASPI32SupportInfo = 0;
fSendASPI32Command = 0;
FreeLibrary (winAspiLib);
winAspiLib = 0;
}
initialised = false;
}
//==============================================================================
HANDLE CreateSCSIDeviceHandle (char driveLetter)
{
TCHAR devicePath[] = { '\\', '\\', '.', '\\', driveLetter, ':', 0, 0 };
OSVERSIONINFO info;
info.dwOSVersionInfoSize = sizeof (info);
GetVersionEx (&info);
DWORD flags = GENERIC_READ;
if ((info.dwPlatformId == VER_PLATFORM_WIN32_NT) && (info.dwMajorVersion > 4))
flags = GENERIC_READ | GENERIC_WRITE;
HANDLE h = CreateFile (devicePath, flags, FILE_SHARE_WRITE | FILE_SHARE_READ, 0, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);
if (h == INVALID_HANDLE_VALUE)
{
flags ^= GENERIC_WRITE;
h = CreateFile (devicePath, flags, FILE_SHARE_WRITE | FILE_SHARE_READ, 0, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);
}
return h;
}
DWORD performScsiPassThroughCommand (const LPSRB_ExecSCSICmd srb, const char driveLetter,
HANDLE& deviceHandle, const bool retryOnFailure = true)
{
SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER s;
zerostruct (s);
s.spt.Length = sizeof (SCSI_PASS_THROUGH);
s.spt.CdbLength = srb->SRB_CDBLen;
s.spt.DataIn = (BYTE) ((srb->SRB_Flags & SRB_DIR_IN)
? SCSI_IOCTL_DATA_IN
: ((srb->SRB_Flags & SRB_DIR_OUT)
? SCSI_IOCTL_DATA_OUT
: SCSI_IOCTL_DATA_UNSPECIFIED));
s.spt.DataTransferLength = srb->SRB_BufLen;
s.spt.TimeOutValue = 5;
s.spt.DataBuffer = srb->SRB_BufPointer;
s.spt.SenseInfoOffset = offsetof (SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER, ucSenseBuf);
memcpy (s.spt.Cdb, srb->CDBByte, srb->SRB_CDBLen);
srb->SRB_Status = SS_ERR;
srb->SRB_TargStat = 0x0004;
DWORD bytesReturned = 0;
if (DeviceIoControl (deviceHandle, IOCTL_SCSI_PASS_THROUGH_DIRECT,
&s, sizeof (s),
&s, sizeof (s),
&bytesReturned, 0) != 0)
{
srb->SRB_Status = SS_COMP;
}
else if (retryOnFailure)
{
const DWORD error = GetLastError();
if ((error == ERROR_MEDIA_CHANGED) || (error == ERROR_INVALID_HANDLE))
{
if (error != ERROR_INVALID_HANDLE)
CloseHandle (deviceHandle);
deviceHandle = CreateSCSIDeviceHandle (driveLetter);
return performScsiPassThroughCommand (srb, driveLetter, deviceHandle, false);
}
}
return srb->SRB_Status;
}
//==============================================================================
// Controller types..
class ControllerType1 : public CDController
{
public:
ControllerType1() {}
~ControllerType1() {}
bool read (CDReadBuffer* rb)
{
if (rb->numFrames * 2352 > rb->bufferSize)
return false;
SRB_ExecSCSICmd s;
prepare (s);
s.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY;
s.SRB_BufLen = rb->bufferSize;
s.SRB_BufPointer = rb->buffer;
s.SRB_CDBLen = 12;
s.CDBByte[0] = 0xBE;
s.CDBByte[3] = (BYTE)((rb->startFrame >> 16) & 0xFF);
s.CDBByte[4] = (BYTE)((rb->startFrame >> 8) & 0xFF);
s.CDBByte[5] = (BYTE)(rb->startFrame & 0xFF);
s.CDBByte[8] = (BYTE)(rb->numFrames & 0xFF);
s.CDBByte[9] = (BYTE)((deviceInfo->readType == READTYPE_ATAPI1) ? 0x10 : 0xF0);
perform (s);
if (s.SRB_Status != SS_COMP)
return false;
rb->dataLength = rb->numFrames * 2352;
rb->dataStartOffset = 0;
return true;
}
};
//==============================================================================
class ControllerType2 : public CDController
{
public:
ControllerType2() {}
~ControllerType2() {}
void shutDown()
{
if (initialised)
{
BYTE bufPointer[] = { 0, 0, 0, 8, 83, 0, 0, 0, 0, 0, 8, 0 };
SRB_ExecSCSICmd s;
prepare (s);
s.SRB_Flags = SRB_EVENT_NOTIFY | SRB_ENABLE_RESIDUAL_COUNT;
s.SRB_BufLen = 0x0C;
s.SRB_BufPointer = bufPointer;
s.SRB_CDBLen = 6;
s.CDBByte[0] = 0x15;
s.CDBByte[4] = 0x0C;
perform (s);
}
}
bool init()
{
SRB_ExecSCSICmd s;
s.SRB_Status = SS_ERR;
if (deviceInfo->readType == READTYPE_READ10_2)
{
BYTE bufPointer1[] = { 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 9, 48, 35, 6, 0, 0, 0, 0, 0, 128 };
BYTE bufPointer2[] = { 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 9, 48, 1, 6, 32, 7, 0, 0, 0, 0 };
for (int i = 0; i < 2; ++i)
{
prepare (s);
s.SRB_Flags = SRB_EVENT_NOTIFY;
s.SRB_BufLen = 0x14;
s.SRB_BufPointer = (i == 0) ? bufPointer1 : bufPointer2;
s.SRB_CDBLen = 6;
s.CDBByte[0] = 0x15;
s.CDBByte[1] = 0x10;
s.CDBByte[4] = 0x14;
perform (s);
if (s.SRB_Status != SS_COMP)
return false;
}
}
else
{
BYTE bufPointer[] = { 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 9, 48 };
prepare (s);
s.SRB_Flags = SRB_EVENT_NOTIFY;
s.SRB_BufLen = 0x0C;
s.SRB_BufPointer = bufPointer;
s.SRB_CDBLen = 6;
s.CDBByte[0] = 0x15;
s.CDBByte[4] = 0x0C;
perform (s);
}
return s.SRB_Status == SS_COMP;
}
bool read (CDReadBuffer* rb)
{
if (rb->numFrames * 2352 > rb->bufferSize)
return false;
if (!initialised)
{
initialised = init();
if (!initialised)
return false;
}
SRB_ExecSCSICmd s;
prepare (s);
s.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY;
s.SRB_BufLen = rb->bufferSize;
s.SRB_BufPointer = rb->buffer;
s.SRB_CDBLen = 10;
s.CDBByte[0] = 0x28;
s.CDBByte[1] = (BYTE)(deviceInfo->info.lun << 5);
s.CDBByte[3] = (BYTE)((rb->startFrame >> 16) & 0xFF);
s.CDBByte[4] = (BYTE)((rb->startFrame >> 8) & 0xFF);
s.CDBByte[5] = (BYTE)(rb->startFrame & 0xFF);
s.CDBByte[8] = (BYTE)(rb->numFrames & 0xFF);
perform (s);
if (s.SRB_Status != SS_COMP)
return false;
rb->dataLength = rb->numFrames * 2352;
rb->dataStartOffset = 0;
return true;
}
};
//==============================================================================
class ControllerType3 : public CDController
{
public:
ControllerType3() {}
~ControllerType3() {}
bool read (CDReadBuffer* rb)
{
if (rb->numFrames * 2352 > rb->bufferSize)
return false;
if (!initialised)
{
setPaused (false);
initialised = true;
}
SRB_ExecSCSICmd s;
prepare (s);
s.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY;
s.SRB_BufLen = rb->numFrames * 2352;
s.SRB_BufPointer = rb->buffer;
s.SRB_CDBLen = 12;
s.CDBByte[0] = 0xD8;
s.CDBByte[3] = (BYTE)((rb->startFrame >> 16) & 0xFF);
s.CDBByte[4] = (BYTE)((rb->startFrame >> 8) & 0xFF);
s.CDBByte[5] = (BYTE)(rb->startFrame & 0xFF);
s.CDBByte[9] = (BYTE)(rb->numFrames & 0xFF);
perform (s);
if (s.SRB_Status != SS_COMP)
return false;
rb->dataLength = rb->numFrames * 2352;
rb->dataStartOffset = 0;
return true;
}
};
//==============================================================================
class ControllerType4 : public CDController
{
public:
ControllerType4() {}
~ControllerType4() {}
bool selectD4Mode()
{
BYTE bufPointer[12] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 48 };
SRB_ExecSCSICmd s;
prepare (s);
s.SRB_Flags = SRB_EVENT_NOTIFY;
s.SRB_CDBLen = 6;
s.SRB_BufLen = 12;
s.SRB_BufPointer = bufPointer;
s.CDBByte[0] = 0x15;
s.CDBByte[1] = 0x10;
s.CDBByte[4] = 0x08;
perform (s);
return s.SRB_Status == SS_COMP;
}
bool read (CDReadBuffer* rb)
{
if (rb->numFrames * 2352 > rb->bufferSize)
return false;
if (!initialised)
{
setPaused (true);
if (deviceInfo->readType == READTYPE_READ_D4_1)
selectD4Mode();
initialised = true;
}
SRB_ExecSCSICmd s;
prepare (s);
s.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY;
s.SRB_BufLen = rb->bufferSize;
s.SRB_BufPointer = rb->buffer;
s.SRB_CDBLen = 10;
s.CDBByte[0] = 0xD4;
s.CDBByte[3] = (BYTE)((rb->startFrame >> 16) & 0xFF);
s.CDBByte[4] = (BYTE)((rb->startFrame >> 8) & 0xFF);
s.CDBByte[5] = (BYTE)(rb->startFrame & 0xFF);
s.CDBByte[8] = (BYTE)(rb->numFrames & 0xFF);
perform (s);
if (s.SRB_Status != SS_COMP)
return false;
rb->dataLength = rb->numFrames * 2352;
rb->dataStartOffset = 0;
return true;
}
};
//==============================================================================
CDController::CDController() : initialised (false)
{
}
CDController::~CDController()
{
}
void CDController::prepare (SRB_ExecSCSICmd& s)
{
zerostruct (s);
s.SRB_Cmd = SC_EXEC_SCSI_CMD;
s.SRB_HaID = deviceInfo->info.ha;
s.SRB_Target = deviceInfo->info.tgt;
s.SRB_Lun = deviceInfo->info.lun;
s.SRB_SenseLen = SENSE_LEN;
}
void CDController::perform (SRB_ExecSCSICmd& s)
{
HANDLE event = CreateEvent (0, TRUE, FALSE, 0);
s.SRB_PostProc = event;
ResetEvent (event);
DWORD status = (usingScsi) ? performScsiPassThroughCommand ((LPSRB_ExecSCSICmd)&s,
deviceInfo->info.scsiDriveLetter,
deviceInfo->scsiHandle)
: fSendASPI32Command ((LPSRB)&s);
if (status == SS_PENDING)
WaitForSingleObject (event, 4000);
CloseHandle (event);
}
void CDController::setPaused (bool paused)
{
SRB_ExecSCSICmd s;
prepare (s);
s.SRB_Flags = SRB_EVENT_NOTIFY;
s.SRB_CDBLen = 10;
s.CDBByte[0] = 0x4B;
s.CDBByte[8] = (BYTE) (paused ? 0 : 1);
perform (s);
}
void CDController::shutDown()
{
}
bool CDController::readAudio (CDReadBuffer* rb, CDReadBuffer* overlapBuffer)
{
if (overlapBuffer != 0)
{
const bool canDoJitter = (overlapBuffer->bufferSize >= 2352 * framesToCheck);
const bool doJitter = canDoJitter && ! overlapBuffer->isZero();
if (doJitter
&& overlapBuffer->startFrame > 0
&& overlapBuffer->numFrames > 0
&& overlapBuffer->dataLength > 0)
{
const int numFrames = rb->numFrames;
if (overlapBuffer->startFrame == (rb->startFrame - framesToCheck))
{
rb->startFrame -= framesOverlap;
if (framesToCheck < framesOverlap
&& numFrames + framesOverlap <= rb->bufferSize / 2352)
rb->numFrames += framesOverlap;
}
else
{
overlapBuffer->dataLength = 0;
overlapBuffer->startFrame = 0;
overlapBuffer->numFrames = 0;
}
}
if (! read (rb))
return false;
if (doJitter)
{
const int checkLen = framesToCheck * 2352;
const int maxToCheck = rb->dataLength - checkLen;
if (overlapBuffer->dataLength == 0 || overlapBuffer->isZero())
return true;
BYTE* const p = overlapBuffer->buffer + overlapBuffer->dataStartOffset;
bool found = false;
for (int i = 0; i < maxToCheck; ++i)
{
if (memcmp (p, rb->buffer + i, checkLen) == 0)
{
i += checkLen;
rb->dataStartOffset = i;
rb->dataLength -= i;
rb->startFrame = overlapBuffer->startFrame + framesToCheck;
found = true;
break;
}
}
rb->numFrames = rb->dataLength / 2352;
rb->dataLength = 2352 * rb->numFrames;
if (!found)
return false;
}
if (canDoJitter)
{
memcpy (overlapBuffer->buffer,
rb->buffer + rb->dataStartOffset + 2352 * (rb->numFrames - framesToCheck),
2352 * framesToCheck);
overlapBuffer->startFrame = rb->startFrame + rb->numFrames - framesToCheck;
overlapBuffer->numFrames = framesToCheck;
overlapBuffer->dataLength = 2352 * framesToCheck;
overlapBuffer->dataStartOffset = 0;
}
else
{
overlapBuffer->startFrame = 0;
overlapBuffer->numFrames = 0;
overlapBuffer->dataLength = 0;
}
return true;
}
else
{
return read (rb);
}
}
int CDController::getLastIndex()
{
char qdata[100];
SRB_ExecSCSICmd s;
prepare (s);
s.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY;
s.SRB_BufLen = sizeof (qdata);
s.SRB_BufPointer = (BYTE*)qdata;
s.SRB_CDBLen = 12;
s.CDBByte[0] = 0x42;
s.CDBByte[1] = (BYTE)(deviceInfo->info.lun << 5);
s.CDBByte[2] = 64;
s.CDBByte[3] = 1; // get current position
s.CDBByte[7] = 0;
s.CDBByte[8] = (BYTE)sizeof (qdata);
perform (s);
if (s.SRB_Status == SS_COMP)
return qdata[7];
return 0;
}
//==============================================================================
bool CDDeviceHandle::readTOC (TOC* lpToc)
{
HANDLE event = CreateEvent (0, TRUE, FALSE, 0);
SRB_ExecSCSICmd s;
zerostruct (s);
s.SRB_Cmd = SC_EXEC_SCSI_CMD;
s.SRB_HaID = info.ha;
s.SRB_Target = info.tgt;
s.SRB_Lun = info.lun;
s.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY;
s.SRB_BufLen = 0x324;
s.SRB_BufPointer = (BYTE*)lpToc;
s.SRB_SenseLen = 0x0E;
s.SRB_CDBLen = 0x0A;
s.SRB_PostProc = event;
s.CDBByte[0] = 0x43;
s.CDBByte[1] = 0x00;
s.CDBByte[7] = 0x03;
s.CDBByte[8] = 0x24;
ResetEvent (event);
DWORD status = (usingScsi) ? performScsiPassThroughCommand ((LPSRB_ExecSCSICmd)&s, info.scsiDriveLetter, scsiHandle)
: fSendASPI32Command ((LPSRB)&s);
if (status == SS_PENDING)
WaitForSingleObject (event, 4000);
CloseHandle (event);
return (s.SRB_Status == SS_COMP);
}
bool CDDeviceHandle::readAudio (CDReadBuffer* const buffer,
CDReadBuffer* const overlapBuffer)
{
if (controller == 0)
{
testController (READTYPE_ATAPI2, new ControllerType1(), buffer)
|| testController (READTYPE_ATAPI1, new ControllerType1(), buffer)
|| testController (READTYPE_READ10_2, new ControllerType2(), buffer)
|| testController (READTYPE_READ10, new ControllerType2(), buffer)
|| testController (READTYPE_READ_D8, new ControllerType3(), buffer)
|| testController (READTYPE_READ_D4, new ControllerType4(), buffer)
|| testController (READTYPE_READ_D4_1, new ControllerType4(), buffer);
}
buffer->index = 0;
if ((controller != 0)
&& controller->readAudio (buffer, overlapBuffer))
{
if (buffer->wantsIndex)
buffer->index = controller->getLastIndex();
return true;
}
return false;
}
void CDDeviceHandle::openDrawer (bool shouldBeOpen)
{
if (shouldBeOpen)
{
if (controller != 0)
{
controller->shutDown();
controller = 0;
}
if (scsiHandle != 0)
{
CloseHandle (scsiHandle);
scsiHandle = 0;
}
}
SRB_ExecSCSICmd s;
zerostruct (s);
s.SRB_Cmd = SC_EXEC_SCSI_CMD;
s.SRB_HaID = info.ha;
s.SRB_Target = info.tgt;
s.SRB_Lun = info.lun;
s.SRB_SenseLen = SENSE_LEN;
s.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY;
s.SRB_BufLen = 0;
s.SRB_BufPointer = 0;
s.SRB_CDBLen = 12;
s.CDBByte[0] = 0x1b;
s.CDBByte[1] = (BYTE)(info.lun << 5);
s.CDBByte[4] = (BYTE)((shouldBeOpen) ? 2 : 3);
HANDLE event = CreateEvent (0, TRUE, FALSE, 0);
s.SRB_PostProc = event;
ResetEvent (event);
DWORD status = (usingScsi) ? performScsiPassThroughCommand ((LPSRB_ExecSCSICmd)&s, info.scsiDriveLetter, scsiHandle)
: fSendASPI32Command ((LPSRB)&s);
if (status == SS_PENDING)
WaitForSingleObject (event, 4000);
CloseHandle (event);
}
bool CDDeviceHandle::testController (const int type,
CDController* const newController,
CDReadBuffer* const rb)
{
controller = newController;
readType = (BYTE)type;
controller->deviceInfo = this;
controller->framesToCheck = 1;
controller->framesOverlap = 3;
bool passed = false;
memset (rb->buffer, 0xcd, rb->bufferSize);
if (controller->read (rb))
{
passed = true;
int* p = (int*) (rb->buffer + rb->dataStartOffset);
int wrong = 0;
for (int i = rb->dataLength / 4; --i >= 0;)
{
if (*p++ == (int) 0xcdcdcdcd)
{
if (++wrong == 4)
{
passed = false;
break;
}
}
else
{
wrong = 0;
}
}
}
if (! passed)
{
controller->shutDown();
controller = 0;
}
return passed;
}
//==============================================================================
void GetAspiDeviceInfo (CDDeviceInfo* dev, BYTE ha, BYTE tgt, BYTE lun)
{
HANDLE event = CreateEvent (0, TRUE, FALSE, 0);
const int bufSize = 128;
BYTE buffer[bufSize];
zeromem (buffer, bufSize);
SRB_ExecSCSICmd s;
zerostruct (s);
s.SRB_Cmd = SC_EXEC_SCSI_CMD;
s.SRB_HaID = ha;
s.SRB_Target = tgt;
s.SRB_Lun = lun;
s.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY;
s.SRB_BufLen = bufSize;
s.SRB_BufPointer = buffer;
s.SRB_SenseLen = SENSE_LEN;
s.SRB_CDBLen = 6;
s.SRB_PostProc = event;
s.CDBByte[0] = SCSI_INQUIRY;
s.CDBByte[4] = 100;
ResetEvent (event);
if (fSendASPI32Command ((LPSRB)&s) == SS_PENDING)
WaitForSingleObject (event, 4000);
CloseHandle (event);
if (s.SRB_Status == SS_COMP)
{
memcpy (dev->vendor, &buffer[8], 8);
memcpy (dev->productId, &buffer[16], 16);
memcpy (dev->rev, &buffer[32], 4);
memcpy (dev->vendorSpec, &buffer[36], 20);
}
}
int FindCDDevices (CDDeviceInfo* const list, int maxItems)
{
int count = 0;
if (usingScsi)
{
for (char driveLetter = 'b'; driveLetter <= 'z'; ++driveLetter)
{
TCHAR drivePath[8];
drivePath[0] = driveLetter;
drivePath[1] = ':';
drivePath[2] = '\\';
drivePath[3] = 0;
if (GetDriveType (drivePath) == DRIVE_CDROM)
{
HANDLE h = CreateSCSIDeviceHandle (driveLetter);
if (h != INVALID_HANDLE_VALUE)
{
BYTE buffer[100], passThroughStruct[1024];
zeromem (buffer, sizeof (buffer));
zeromem (passThroughStruct, sizeof (passThroughStruct));
PSCSI_PASS_THROUGH_DIRECT_WITH_BUFFER p = (PSCSI_PASS_THROUGH_DIRECT_WITH_BUFFER)passThroughStruct;
p->spt.Length = sizeof (SCSI_PASS_THROUGH);
p->spt.CdbLength = 6;
p->spt.SenseInfoLength = 24;
p->spt.DataIn = SCSI_IOCTL_DATA_IN;
p->spt.DataTransferLength = 100;
p->spt.TimeOutValue = 2;
p->spt.DataBuffer = buffer;
p->spt.SenseInfoOffset = offsetof (SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER, ucSenseBuf);
p->spt.Cdb[0] = 0x12;
p->spt.Cdb[4] = 100;
DWORD bytesReturned = 0;
if (DeviceIoControl (h, IOCTL_SCSI_PASS_THROUGH_DIRECT,
p, sizeof (SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER),
p, sizeof (SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER),
&bytesReturned, 0) != 0)
{
zeromem (&list[count], sizeof (CDDeviceInfo));
list[count].scsiDriveLetter = driveLetter;
memcpy (list[count].vendor, &buffer[8], 8);
memcpy (list[count].productId, &buffer[16], 16);
memcpy (list[count].rev, &buffer[32], 4);
memcpy (list[count].vendorSpec, &buffer[36], 20);
zeromem (passThroughStruct, sizeof (passThroughStruct));
PSCSI_ADDRESS scsiAddr = (PSCSI_ADDRESS)passThroughStruct;
scsiAddr->Length = sizeof (SCSI_ADDRESS);
if (DeviceIoControl (h, IOCTL_SCSI_GET_ADDRESS,
0, 0, scsiAddr, sizeof (SCSI_ADDRESS),
&bytesReturned, 0) != 0)
{
list[count].ha = scsiAddr->PortNumber;
list[count].tgt = scsiAddr->TargetId;
list[count].lun = scsiAddr->Lun;
++count;
}
}
CloseHandle (h);
}
}
}
}
else
{
const DWORD d = fGetASPI32SupportInfo();
BYTE status = HIBYTE (LOWORD (d));
if (status != SS_COMP || status == SS_NO_ADAPTERS)
return 0;
const int numAdapters = LOBYTE (LOWORD (d));
for (BYTE ha = 0; ha < numAdapters; ++ha)
{
SRB_HAInquiry s;
zerostruct (s);
s.SRB_Cmd = SC_HA_INQUIRY;
s.SRB_HaID = ha;
fSendASPI32Command ((LPSRB)&s);
if (s.SRB_Status == SS_COMP)
{
maxItems = (int)s.HA_Unique[3];
if (maxItems == 0)
maxItems = 8;
for (BYTE tgt = 0; tgt < maxItems; ++tgt)
{
for (BYTE lun = 0; lun < 8; ++lun)
{
SRB_GDEVBlock sb;
zerostruct (sb);
sb.SRB_Cmd = SC_GET_DEV_TYPE;
sb.SRB_HaID = ha;
sb.SRB_Target = tgt;
sb.SRB_Lun = lun;
fSendASPI32Command ((LPSRB) &sb);
if (sb.SRB_Status == SS_COMP
&& sb.SRB_DeviceType == DTYPE_CROM)
{
zeromem (&list[count], sizeof (CDDeviceInfo));
list[count].ha = ha;
list[count].tgt = tgt;
list[count].lun = lun;
GetAspiDeviceInfo (&(list[count]), ha, tgt, lun);
++count;
}
}
}
}
}
}
return count;
}
//==============================================================================
static int ripperUsers = 0;
static bool initialisedOk = false;
class DeinitialiseTimer : private Timer,
private DeletedAtShutdown
{
DeinitialiseTimer (const DeinitialiseTimer&);
DeinitialiseTimer& operator= (const DeinitialiseTimer&);
public:
DeinitialiseTimer()
{
startTimer (4000);
}
~DeinitialiseTimer()
{
if (--ripperUsers == 0)
DeinitialiseCDRipper();
}
void timerCallback()
{
delete this;
}
juce_UseDebuggingNewOperator
};
static void incUserCount()
{
if (ripperUsers++ == 0)
initialisedOk = InitialiseCDRipper();
}
static void decUserCount()
{
new DeinitialiseTimer();
}
//==============================================================================
struct CDDeviceWrapper
{
ScopedPointer<CDDeviceHandle> cdH;
ScopedPointer<CDReadBuffer> overlapBuffer;
bool jitter;
};
//==============================================================================
int getAddressOf (const TOCTRACK* const t)
{
return (((DWORD)t->addr[0]) << 24) + (((DWORD)t->addr[1]) << 16) +
(((DWORD)t->addr[2]) << 8) + ((DWORD)t->addr[3]);
}
static const int samplesPerFrame = 44100 / 75;
static const int bytesPerFrame = samplesPerFrame * 4;
CDDeviceHandle* openHandle (const CDDeviceInfo* const device)
{
SRB_GDEVBlock s;
zerostruct (s);
s.SRB_Cmd = SC_GET_DEV_TYPE;
s.SRB_HaID = device->ha;
s.SRB_Target = device->tgt;
s.SRB_Lun = device->lun;
if (usingScsi)
{
HANDLE h = CreateSCSIDeviceHandle (device->scsiDriveLetter);
if (h != INVALID_HANDLE_VALUE)
{
CDDeviceHandle* cdh = new CDDeviceHandle (device);
cdh->scsiHandle = h;
return cdh;
}
}
else
{
if (fSendASPI32Command ((LPSRB)&s) == SS_COMP
&& s.SRB_DeviceType == DTYPE_CROM)
{
return new CDDeviceHandle (device);
}
}
return 0;
}
}
//==============================================================================
const StringArray AudioCDReader::getAvailableCDNames()
{
using namespace CDReaderHelpers;
StringArray results;
incUserCount();
if (initialisedOk)
{
CDDeviceInfo list[8];
const int num = FindCDDevices (list, 8);
decUserCount();
for (int i = 0; i < num; ++i)
{
String s;
if (list[i].scsiDriveLetter > 0)
s << String::charToString (list[i].scsiDriveLetter).toUpperCase() << ": ";
s << String (list[i].vendor).trim()
<< ' ' << String (list[i].productId).trim()
<< ' ' << String (list[i].rev).trim();
results.add (s);
}
}
return results;
}
AudioCDReader* AudioCDReader::createReaderForCD (const int deviceIndex)
{
using namespace CDReaderHelpers;
incUserCount();
if (initialisedOk)
{
CDDeviceInfo list[8];
const int num = FindCDDevices (list, 8);
if (((unsigned int) deviceIndex) < (unsigned int) num)
{
CDDeviceHandle* const handle = openHandle (&(list[deviceIndex]));
if (handle != 0)
{
CDDeviceWrapper* const d = new CDDeviceWrapper();
d->cdH = handle;
d->overlapBuffer = new CDReadBuffer(3);
return new AudioCDReader (d);
}
}
}
decUserCount();
return 0;
}
AudioCDReader::AudioCDReader (void* handle_)
: AudioFormatReader (0, "CD Audio"),
handle (handle_),
indexingEnabled (false),
lastIndex (0),
firstFrameInBuffer (0),
samplesInBuffer (0)
{
using namespace CDReaderHelpers;
jassert (handle_ != 0);
refreshTrackLengths();
sampleRate = 44100.0;
bitsPerSample = 16;
numChannels = 2;
usesFloatingPointData = false;
buffer.setSize (4 * bytesPerFrame, true);
}
AudioCDReader::~AudioCDReader()
{
using namespace CDReaderHelpers;
CDDeviceWrapper* const device = (CDDeviceWrapper*) handle;
delete device;
decUserCount();
}
bool AudioCDReader::readSamples (int** destSamples, int numDestChannels, int startOffsetInDestBuffer,
int64 startSampleInFile, int numSamples)
{
using namespace CDReaderHelpers;
CDDeviceWrapper* const device = (CDDeviceWrapper*) handle;
bool ok = true;
while (numSamples > 0)
{
const int bufferStartSample = firstFrameInBuffer * samplesPerFrame;
const int bufferEndSample = bufferStartSample + samplesInBuffer;
if (startSampleInFile >= bufferStartSample
&& startSampleInFile < bufferEndSample)
{
const int toDo = (int) jmin ((int64) numSamples, bufferEndSample - startSampleInFile);
int* const l = destSamples[0] + startOffsetInDestBuffer;
int* const r = numDestChannels > 1 ? (destSamples[1] + startOffsetInDestBuffer) : 0;
const short* src = (const short*) buffer.getData();
src += 2 * (startSampleInFile - bufferStartSample);
for (int i = 0; i < toDo; ++i)
{
l[i] = src [i << 1] << 16;
if (r != 0)
r[i] = src [(i << 1) + 1] << 16;
}
startOffsetInDestBuffer += toDo;
startSampleInFile += toDo;
numSamples -= toDo;
}
else
{
const int framesInBuffer = buffer.getSize() / bytesPerFrame;
const int frameNeeded = (int) (startSampleInFile / samplesPerFrame);
if (firstFrameInBuffer + framesInBuffer != frameNeeded)
{
device->overlapBuffer->dataLength = 0;
device->overlapBuffer->startFrame = 0;
device->overlapBuffer->numFrames = 0;
device->jitter = false;
}
firstFrameInBuffer = frameNeeded;
lastIndex = 0;
CDReadBuffer readBuffer (framesInBuffer + 4);
readBuffer.wantsIndex = indexingEnabled;
int i;
for (i = 5; --i >= 0;)
{
readBuffer.startFrame = frameNeeded;
readBuffer.numFrames = framesInBuffer;
if (device->cdH->readAudio (&readBuffer, (device->jitter) ? device->overlapBuffer : 0))
break;
else
device->overlapBuffer->dataLength = 0;
}
if (i >= 0)
{
memcpy ((char*) buffer.getData(),
readBuffer.buffer + readBuffer.dataStartOffset,
readBuffer.dataLength);
samplesInBuffer = readBuffer.dataLength >> 2;
lastIndex = readBuffer.index;
}
else
{
int* l = destSamples[0] + startOffsetInDestBuffer;
int* r = numDestChannels > 1 ? (destSamples[1] + startOffsetInDestBuffer) : 0;
while (--numSamples >= 0)
{
*l++ = 0;
if (r != 0)
*r++ = 0;
}
// sometimes the read fails for just the very last couple of blocks, so
// we'll ignore and errors in the last half-second of the disk..
ok = startSampleInFile > (trackStartSamples [getNumTracks()] - 20000);
break;
}
}
}
return ok;
}
bool AudioCDReader::isCDStillPresent() const
{
using namespace CDReaderHelpers;
TOC toc;
zerostruct (toc);
return ((CDDeviceWrapper*) handle)->cdH->readTOC (&toc);
}
void AudioCDReader::refreshTrackLengths()
{
using namespace CDReaderHelpers;
trackStartSamples.clear();
zeromem (audioTracks, sizeof (audioTracks));
TOC toc;
zerostruct (toc);
if (((CDDeviceWrapper*)handle)->cdH->readTOC (&toc))
{
int numTracks = 1 + toc.lastTrack - toc.firstTrack;
for (int i = 0; i <= numTracks; ++i)
{
trackStartSamples.add (samplesPerFrame * getAddressOf (&toc.tracks [i]));
audioTracks [i] = ((toc.tracks[i].ADR & 4) == 0);
}
}
lengthInSamples = getPositionOfTrackStart (getNumTracks());
}
bool AudioCDReader::isTrackAudio (int trackNum) const
{
return trackNum >= 0 && trackNum < getNumTracks() && audioTracks [trackNum];
}
void AudioCDReader::enableIndexScanning (bool b)
{
indexingEnabled = b;
}
int AudioCDReader::getLastIndex() const
{
return lastIndex;
}
const int framesPerIndexRead = 4;
int AudioCDReader::getIndexAt (int samplePos)
{
using namespace CDReaderHelpers;
CDDeviceWrapper* const device = (CDDeviceWrapper*) handle;
const int frameNeeded = samplePos / samplesPerFrame;
device->overlapBuffer->dataLength = 0;
device->overlapBuffer->startFrame = 0;
device->overlapBuffer->numFrames = 0;
device->jitter = false;
firstFrameInBuffer = 0;
lastIndex = 0;
CDReadBuffer readBuffer (4 + framesPerIndexRead);
readBuffer.wantsIndex = true;
int i;
for (i = 5; --i >= 0;)
{
readBuffer.startFrame = frameNeeded;
readBuffer.numFrames = framesPerIndexRead;
if (device->cdH->readAudio (&readBuffer, (false) ? device->overlapBuffer : 0))
break;
}
if (i >= 0)
return readBuffer.index;
return -1;
}
const Array <int> AudioCDReader::findIndexesInTrack (const int trackNumber)
{
using namespace CDReaderHelpers;
Array <int> indexes;
const int trackStart = getPositionOfTrackStart (trackNumber);
const int trackEnd = getPositionOfTrackStart (trackNumber + 1);
bool needToScan = true;
if (trackEnd - trackStart > 20 * 44100)
{
// check the end of the track for indexes before scanning the whole thing
needToScan = false;
int pos = jmax (trackStart, trackEnd - 44100 * 5);
bool seenAnIndex = false;
while (pos <= trackEnd - samplesPerFrame)
{
const int index = getIndexAt (pos);
if (index == 0)
{
// lead-out, so skip back a bit if we've not found any indexes yet..
if (seenAnIndex)
break;
pos -= 44100 * 5;
if (pos < trackStart)
break;
}
else
{
if (index > 0)
seenAnIndex = true;
if (index > 1)
{
needToScan = true;
break;
}
pos += samplesPerFrame * framesPerIndexRead;
}
}
}
if (needToScan)
{
CDDeviceWrapper* const device = (CDDeviceWrapper*) handle;
int pos = trackStart;
int last = -1;
while (pos < trackEnd - samplesPerFrame * 10)
{
const int frameNeeded = pos / samplesPerFrame;
device->overlapBuffer->dataLength = 0;
device->overlapBuffer->startFrame = 0;
device->overlapBuffer->numFrames = 0;
device->jitter = false;
firstFrameInBuffer = 0;
CDReadBuffer readBuffer (4);
readBuffer.wantsIndex = true;
int i;
for (i = 5; --i >= 0;)
{
readBuffer.startFrame = frameNeeded;
readBuffer.numFrames = framesPerIndexRead;
if (device->cdH->readAudio (&readBuffer, (false) ? device->overlapBuffer : 0))
break;
}
if (i < 0)
break;
if (readBuffer.index > last && readBuffer.index > 1)
{
last = readBuffer.index;
indexes.add (pos);
}
pos += samplesPerFrame * framesPerIndexRead;
}
indexes.removeValue (trackStart);
}
return indexes;
}
void AudioCDReader::ejectDisk()
{
using namespace CDReaderHelpers;
((CDDeviceWrapper*) handle)->cdH->openDrawer (true);
}
#endif
#if JUCE_USE_CDBURNER
//==============================================================================
namespace CDBurnerHelpers
{
IDiscRecorder* enumCDBurners (StringArray* list, int indexToOpen, IDiscMaster** master)
{
CoInitialize (0);
IDiscMaster* dm;
IDiscRecorder* result = 0;
if (SUCCEEDED (CoCreateInstance (CLSID_MSDiscMasterObj, 0,
CLSCTX_INPROC_SERVER | CLSCTX_LOCAL_SERVER,
IID_IDiscMaster,
(void**) &dm)))
{
if (SUCCEEDED (dm->Open()))
{
IEnumDiscRecorders* drEnum = 0;
if (SUCCEEDED (dm->EnumDiscRecorders (&drEnum)))
{
IDiscRecorder* dr = 0;
DWORD dummy;
int index = 0;
while (drEnum->Next (1, &dr, &dummy) == S_OK)
{
if (indexToOpen == index)
{
result = dr;
break;
}
else if (list != 0)
{
BSTR path;
if (SUCCEEDED (dr->GetPath (&path)))
list->add ((const WCHAR*) path);
}
++index;
dr->Release();
}
drEnum->Release();
}
if (master == 0)
dm->Close();
}
if (master != 0)
*master = dm;
else
dm->Release();
}
return result;
}
}
//==============================================================================
class AudioCDBurner::Pimpl : public ComBaseClassHelper <IDiscMasterProgressEvents>,
public Timer
{
public:
Pimpl (AudioCDBurner& owner_, IDiscMaster* discMaster_, IDiscRecorder* discRecorder_)
: owner (owner_), discMaster (discMaster_), discRecorder (discRecorder_), redbook (0),
listener (0), progress (0), shouldCancel (false)
{
HRESULT hr = discMaster->SetActiveDiscMasterFormat (IID_IRedbookDiscMaster, (void**) &redbook);
jassert (SUCCEEDED (hr));
hr = discMaster->SetActiveDiscRecorder (discRecorder);
//jassert (SUCCEEDED (hr));
lastState = getDiskState();
startTimer (2000);
}
~Pimpl() {}
void releaseObjects()
{
discRecorder->Close();
if (redbook != 0)
redbook->Release();
discRecorder->Release();
discMaster->Release();
Release();
}
HRESULT __stdcall QueryCancel (boolean* pbCancel)
{
if (listener != 0 && ! shouldCancel)
shouldCancel = listener->audioCDBurnProgress (progress);
*pbCancel = shouldCancel;
return S_OK;
}
HRESULT __stdcall NotifyBlockProgress (long nCompleted, long nTotal)
{
progress = nCompleted / (float) nTotal;
shouldCancel = listener != 0 && listener->audioCDBurnProgress (progress);
return E_NOTIMPL;
}
HRESULT __stdcall NotifyPnPActivity (void) { return E_NOTIMPL; }
HRESULT __stdcall NotifyAddProgress (long /*nCompletedSteps*/, long /*nTotalSteps*/) { return E_NOTIMPL; }
HRESULT __stdcall NotifyTrackProgress (long /*nCurrentTrack*/, long /*nTotalTracks*/) { return E_NOTIMPL; }
HRESULT __stdcall NotifyPreparingBurn (long /*nEstimatedSeconds*/) { return E_NOTIMPL; }
HRESULT __stdcall NotifyClosingDisc (long /*nEstimatedSeconds*/) { return E_NOTIMPL; }
HRESULT __stdcall NotifyBurnComplete (HRESULT /*status*/) { return E_NOTIMPL; }
HRESULT __stdcall NotifyEraseComplete (HRESULT /*status*/) { return E_NOTIMPL; }
class ScopedDiscOpener
{
public:
ScopedDiscOpener (Pimpl& p) : pimpl (p) { pimpl.discRecorder->OpenExclusive(); }
~ScopedDiscOpener() { pimpl.discRecorder->Close(); }
private:
Pimpl& pimpl;
ScopedDiscOpener (const ScopedDiscOpener&);
ScopedDiscOpener& operator= (const ScopedDiscOpener&);
};
DiskState getDiskState()
{
const ScopedDiscOpener opener (*this);
long type, flags;
HRESULT hr = discRecorder->QueryMediaType (&type, &flags);
if (FAILED (hr))
return unknown;
if (type != 0 && (flags & MEDIA_WRITABLE) != 0)
return writableDiskPresent;
if (type == 0)
return noDisc;
else
return readOnlyDiskPresent;
}
int getIntProperty (const LPOLESTR name, const int defaultReturn) const
{
ComSmartPtr<IPropertyStorage> prop;
if (FAILED (discRecorder->GetRecorderProperties (prop.resetAndGetPointerAddress())))
return defaultReturn;
PROPSPEC iPropSpec;
iPropSpec.ulKind = PRSPEC_LPWSTR;
iPropSpec.lpwstr = name;
PROPVARIANT iPropVariant;
return FAILED (prop->ReadMultiple (1, &iPropSpec, &iPropVariant))
? defaultReturn : (int) iPropVariant.lVal;
}
bool setIntProperty (const LPOLESTR name, const int value) const
{
ComSmartPtr<IPropertyStorage> prop;
if (FAILED (discRecorder->GetRecorderProperties (prop.resetAndGetPointerAddress())))
return false;
PROPSPEC iPropSpec;
iPropSpec.ulKind = PRSPEC_LPWSTR;
iPropSpec.lpwstr = name;
PROPVARIANT iPropVariant;
if (FAILED (prop->ReadMultiple (1, &iPropSpec, &iPropVariant)))
return false;
iPropVariant.lVal = (long) value;
return SUCCEEDED (prop->WriteMultiple (1, &iPropSpec, &iPropVariant, iPropVariant.vt))
&& SUCCEEDED (discRecorder->SetRecorderProperties (prop));
}
void timerCallback()
{
const DiskState state = getDiskState();
if (state != lastState)
{
lastState = state;
owner.sendChangeMessage();
}
}
AudioCDBurner& owner;
DiskState lastState;
IDiscMaster* discMaster;
IDiscRecorder* discRecorder;
IRedbookDiscMaster* redbook;
AudioCDBurner::BurnProgressListener* listener;
float progress;
bool shouldCancel;
};
//==============================================================================
AudioCDBurner::AudioCDBurner (const int deviceIndex)
{
IDiscMaster* discMaster = 0;
IDiscRecorder* discRecorder = CDBurnerHelpers::enumCDBurners (0, deviceIndex, &discMaster);
if (discRecorder != 0)
pimpl = new Pimpl (*this, discMaster, discRecorder);
}
AudioCDBurner::~AudioCDBurner()
{
if (pimpl != 0)
pimpl.release()->releaseObjects();
}
const StringArray AudioCDBurner::findAvailableDevices()
{
StringArray devs;
CDBurnerHelpers::enumCDBurners (&devs, -1, 0);
return devs;
}
AudioCDBurner* AudioCDBurner::openDevice (const int deviceIndex)
{
ScopedPointer<AudioCDBurner> b (new AudioCDBurner (deviceIndex));
if (b->pimpl == 0)
b = 0;
return b.release();
}
AudioCDBurner::DiskState AudioCDBurner::getDiskState() const
{
return pimpl->getDiskState();
}
bool AudioCDBurner::isDiskPresent() const
{
return getDiskState() == writableDiskPresent;
}
bool AudioCDBurner::openTray()
{
const Pimpl::ScopedDiscOpener opener (*pimpl);
return SUCCEEDED (pimpl->discRecorder->Eject());
}
AudioCDBurner::DiskState AudioCDBurner::waitUntilStateChange (int timeOutMilliseconds)
{
const int64 timeout = Time::currentTimeMillis() + timeOutMilliseconds;
DiskState oldState = getDiskState();
DiskState newState = oldState;
while (newState == oldState && Time::currentTimeMillis() < timeout)
{
newState = getDiskState();
Thread::sleep (jmin (250, (int) (timeout - Time::currentTimeMillis())));
}
return newState;
}
const Array<int> AudioCDBurner::getAvailableWriteSpeeds() const
{
Array<int> results;
const int maxSpeed = pimpl->getIntProperty (L"MaxWriteSpeed", 1);
const int speeds[] = { 1, 2, 4, 8, 12, 16, 20, 24, 32, 40, 64, 80 };
for (int i = 0; i < numElementsInArray (speeds); ++i)
if (speeds[i] <= maxSpeed)
results.add (speeds[i]);
results.addIfNotAlreadyThere (maxSpeed);
return results;
}
bool AudioCDBurner::setBufferUnderrunProtection (const bool shouldBeEnabled)
{
if (pimpl->getIntProperty (L"BufferUnderrunFreeCapable", 0) == 0)
return false;
pimpl->setIntProperty (L"EnableBufferUnderrunFree", shouldBeEnabled ? -1 : 0);
return pimpl->getIntProperty (L"EnableBufferUnderrunFree", 0) != 0;
}
int AudioCDBurner::getNumAvailableAudioBlocks() const
{
long blocksFree = 0;
pimpl->redbook->GetAvailableAudioTrackBlocks (&blocksFree);
return blocksFree;
}
const String AudioCDBurner::burn (AudioCDBurner::BurnProgressListener* listener, bool ejectDiscAfterwards,
bool performFakeBurnForTesting, int writeSpeed)
{
pimpl->setIntProperty (L"WriteSpeed", writeSpeed > 0 ? writeSpeed : -1);
pimpl->listener = listener;
pimpl->progress = 0;
pimpl->shouldCancel = false;
UINT_PTR cookie;
HRESULT hr = pimpl->discMaster->ProgressAdvise ((AudioCDBurner::Pimpl*) pimpl, &cookie);
hr = pimpl->discMaster->RecordDisc (performFakeBurnForTesting,
ejectDiscAfterwards);
String error;
if (hr != S_OK)
{
const char* e = "Couldn't open or write to the CD device";
if (hr == IMAPI_E_USERABORT)
e = "User cancelled the write operation";
else if (hr == IMAPI_E_MEDIUM_NOTPRESENT || hr == IMAPI_E_TRACKOPEN)
e = "No Disk present";
error = e;
}
pimpl->discMaster->ProgressUnadvise (cookie);
pimpl->listener = 0;
return error;
}
bool AudioCDBurner::addAudioTrack (AudioSource* audioSource, int numSamples)
{
if (audioSource == 0)
return false;
ScopedPointer<AudioSource> source (audioSource);
long bytesPerBlock;
HRESULT hr = pimpl->redbook->GetAudioBlockSize (&bytesPerBlock);
const int samplesPerBlock = bytesPerBlock / 4;
bool ok = true;
hr = pimpl->redbook->CreateAudioTrack ((long) numSamples / (bytesPerBlock * 4));
HeapBlock <byte> buffer (bytesPerBlock);
AudioSampleBuffer sourceBuffer (2, samplesPerBlock);
int samplesDone = 0;
source->prepareToPlay (samplesPerBlock, 44100.0);
while (ok)
{
{
AudioSourceChannelInfo info;
info.buffer = &sourceBuffer;
info.numSamples = samplesPerBlock;
info.startSample = 0;
sourceBuffer.clear();
source->getNextAudioBlock (info);
}
zeromem (buffer, bytesPerBlock);
typedef AudioData::Pointer <AudioData::Int16, AudioData::LittleEndian,
AudioData::Interleaved, AudioData::NonConst> CDSampleFormat;
typedef AudioData::Pointer <AudioData::Float32, AudioData::NativeEndian,
AudioData::NonInterleaved, AudioData::Const> SourceSampleFormat;
CDSampleFormat left (buffer, 2);
left.convertSamples (SourceSampleFormat (sourceBuffer.getSampleData (0)), samplesPerBlock);
CDSampleFormat right (buffer + 2, 2);
right.convertSamples (SourceSampleFormat (sourceBuffer.getSampleData (1)), samplesPerBlock);
hr = pimpl->redbook->AddAudioTrackBlocks (buffer, bytesPerBlock);
if (FAILED (hr))
ok = false;
samplesDone += samplesPerBlock;
if (samplesDone >= numSamples)
break;
}
hr = pimpl->redbook->CloseAudioTrack();
return ok && hr == S_OK;
}
#endif
#endif