1
0
Fork 0
mirror of https://github.com/juce-framework/JUCE.git synced 2026-01-10 23:44:24 +00:00
JUCE/modules/juce_audio_utils/players/juce_AudioProcessorPlayer.cpp
2024-04-16 11:39:35 +01:00

510 lines
19 KiB
C++

/*
==============================================================================
This file is part of the JUCE framework.
Copyright (c) Raw Material Software Limited
JUCE is an open source framework subject to commercial or open source
licensing.
By downloading, installing, or using the JUCE framework, or combining the
JUCE framework with any other source code, object code, content or any other
copyrightable work, you agree to the terms of the JUCE End User Licence
Agreement, and all incorporated terms including the JUCE Privacy Policy and
the JUCE Website Terms of Service, as applicable, which will bind you. If you
do not agree to the terms of these agreements, we will not license the JUCE
framework to you, and you must discontinue the installation or download
process and cease use of the JUCE framework.
JUCE End User Licence Agreement: https://juce.com/legal/juce-8-licence/
JUCE Privacy Policy: https://juce.com/juce-privacy-policy
JUCE Website Terms of Service: https://juce.com/juce-website-terms-of-service/
Or:
You may also use this code under the terms of the AGPLv3:
https://www.gnu.org/licenses/agpl-3.0.en.html
THE JUCE FRAMEWORK IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL
WARRANTIES, WHETHER EXPRESSED OR IMPLIED, INCLUDING WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED.
==============================================================================
*/
namespace juce
{
template <typename Value>
struct ChannelInfo
{
ChannelInfo() = default;
ChannelInfo (Value* const* dataIn, int numChannelsIn)
: data (dataIn), numChannels (numChannelsIn) {}
Value* const* data = nullptr;
int numChannels = 0;
};
/** Sets up `channels` so that it contains channel pointers suitable for passing to
an AudioProcessor's processBlock.
On return, `channels` will hold `max (processorIns, processorOuts)` entries.
The first `processorIns` entries will point to buffers holding input data.
Any entries after the first `processorIns` entries will point to zeroed buffers.
In the case that the system only provides a single input channel, but the processor
has been initialised with multiple input channels, the system input will be copied
to all processor inputs.
In the case that the system provides no input channels, but the processor has
been initialise with multiple input channels, the processor's input channels will
all be zeroed.
@param ins the system inputs.
@param outs the system outputs.
@param numSamples the number of samples in the system buffers.
@param processorIns the number of input channels requested by the processor.
@param processorOuts the number of output channels requested by the processor.
@param tempBuffer temporary storage for inputs that don't have a corresponding output.
@param channels holds pointers to each of the processor's audio channels.
*/
static void initialiseIoBuffers (ChannelInfo<const float> ins,
ChannelInfo<float> outs,
const int numSamples,
int processorIns,
int processorOuts,
AudioBuffer<float>& tempBuffer,
std::vector<float*>& channels)
{
jassert ((int) channels.size() >= jmax (processorIns, processorOuts));
size_t totalNumChans = 0;
const auto numBytes = (size_t) numSamples * sizeof (float);
const auto prepareInputChannel = [&] (int index)
{
if (ins.numChannels == 0)
zeromem (channels[totalNumChans], numBytes);
else
memcpy (channels[totalNumChans], ins.data[index % ins.numChannels], numBytes);
};
if (processorIns > processorOuts)
{
// If there aren't enough output channels for the number of
// inputs, we need to use some temporary extra ones (can't
// use the input data in case it gets written to).
jassert (tempBuffer.getNumChannels() >= processorIns - processorOuts);
jassert (tempBuffer.getNumSamples() >= numSamples);
for (int i = 0; i < processorOuts; ++i)
{
channels[totalNumChans] = outs.data[i];
prepareInputChannel (i);
++totalNumChans;
}
for (auto i = processorOuts; i < processorIns; ++i)
{
channels[totalNumChans] = tempBuffer.getWritePointer (i - processorOuts);
prepareInputChannel (i);
++totalNumChans;
}
}
else
{
for (int i = 0; i < processorIns; ++i)
{
channels[totalNumChans] = outs.data[i];
prepareInputChannel (i);
++totalNumChans;
}
for (auto i = processorIns; i < processorOuts; ++i)
{
channels[totalNumChans] = outs.data[i];
zeromem (channels[totalNumChans], (size_t) numSamples * sizeof (float));
++totalNumChans;
}
}
}
//==============================================================================
AudioProcessorPlayer::AudioProcessorPlayer (bool doDoublePrecisionProcessing)
: isDoublePrecision (doDoublePrecisionProcessing)
{
}
AudioProcessorPlayer::~AudioProcessorPlayer()
{
setProcessor (nullptr);
}
//==============================================================================
AudioProcessorPlayer::NumChannels AudioProcessorPlayer::findMostSuitableLayout (const AudioProcessor& proc) const
{
if (proc.isMidiEffect())
return {};
std::vector<NumChannels> layouts { deviceChannels };
if (deviceChannels.ins == 0 || deviceChannels.ins == 1)
{
layouts.emplace_back (defaultProcessorChannels.ins, deviceChannels.outs);
layouts.emplace_back (deviceChannels.outs, deviceChannels.outs);
}
const auto it = std::find_if (layouts.begin(), layouts.end(), [&] (const NumChannels& chans)
{
return proc.checkBusesLayoutSupported (chans.toLayout());
});
return it != std::end (layouts) ? *it : layouts[0];
}
void AudioProcessorPlayer::resizeChannels()
{
const auto maxChannels = jmax (deviceChannels.ins,
deviceChannels.outs,
actualProcessorChannels.ins,
actualProcessorChannels.outs);
channels.resize ((size_t) maxChannels);
tempBuffer.setSize (maxChannels, blockSize);
}
void AudioProcessorPlayer::setProcessor (AudioProcessor* const processorToPlay)
{
const ScopedLock sl (lock);
if (processor == processorToPlay)
return;
sampleCount = 0;
currentWorkgroup.reset();
if (processorToPlay != nullptr && sampleRate > 0 && blockSize > 0)
{
defaultProcessorChannels = NumChannels { processorToPlay->getBusesLayout() };
actualProcessorChannels = findMostSuitableLayout (*processorToPlay);
if (processorToPlay->isMidiEffect())
processorToPlay->setRateAndBufferSizeDetails (sampleRate, blockSize);
else
processorToPlay->setPlayConfigDetails (actualProcessorChannels.ins,
actualProcessorChannels.outs,
sampleRate,
blockSize);
auto supportsDouble = processorToPlay->supportsDoublePrecisionProcessing() && isDoublePrecision;
processorToPlay->setProcessingPrecision (supportsDouble ? AudioProcessor::doublePrecision
: AudioProcessor::singlePrecision);
processorToPlay->prepareToPlay (sampleRate, blockSize);
}
AudioProcessor* oldOne = nullptr;
oldOne = isPrepared ? processor : nullptr;
processor = processorToPlay;
isPrepared = true;
resizeChannels();
if (oldOne != nullptr)
oldOne->releaseResources();
}
void AudioProcessorPlayer::setDoublePrecisionProcessing (bool doublePrecision)
{
if (doublePrecision != isDoublePrecision)
{
const ScopedLock sl (lock);
currentWorkgroup.reset();
if (processor != nullptr)
{
processor->releaseResources();
auto supportsDouble = processor->supportsDoublePrecisionProcessing() && doublePrecision;
processor->setProcessingPrecision (supportsDouble ? AudioProcessor::doublePrecision
: AudioProcessor::singlePrecision);
processor->prepareToPlay (sampleRate, blockSize);
}
isDoublePrecision = doublePrecision;
}
}
void AudioProcessorPlayer::setMidiOutput (MidiOutput* midiOutputToUse)
{
if (midiOutput != midiOutputToUse)
{
const ScopedLock sl (lock);
midiOutput = midiOutputToUse;
}
}
//==============================================================================
void AudioProcessorPlayer::audioDeviceIOCallbackWithContext (const float* const* const inputChannelData,
const int numInputChannels,
float* const* const outputChannelData,
const int numOutputChannels,
const int numSamples,
const AudioIODeviceCallbackContext& context)
{
const ScopedLock sl (lock);
jassert (currentDevice != nullptr);
// These should have been prepared by audioDeviceAboutToStart()...
jassert (sampleRate > 0 && blockSize > 0);
incomingMidi.clear();
messageCollector.removeNextBlockOfMessages (incomingMidi, numSamples);
initialiseIoBuffers ({ inputChannelData, numInputChannels },
{ outputChannelData, numOutputChannels },
numSamples,
actualProcessorChannels.ins,
actualProcessorChannels.outs,
tempBuffer,
channels);
const auto totalNumChannels = jmax (actualProcessorChannels.ins, actualProcessorChannels.outs);
AudioBuffer<float> buffer (channels.data(), (int) totalNumChannels, numSamples);
if (processor != nullptr)
{
// The processor should be prepared to deal with the same number of output channels
// as our output device.
jassert (processor->isMidiEffect() || numOutputChannels == actualProcessorChannels.outs);
const ScopedLock sl2 (processor->getCallbackLock());
if (std::exchange (currentWorkgroup, currentDevice->getWorkgroup()) != currentDevice->getWorkgroup())
processor->audioWorkgroupContextChanged (currentWorkgroup);
class PlayHead final : private AudioPlayHead
{
public:
PlayHead (AudioProcessor& proc,
Optional<uint64_t> hostTimeIn,
uint64_t sampleCountIn,
double sampleRateIn)
: processor (proc),
hostTimeNs (hostTimeIn),
sampleCount (sampleCountIn),
seconds ((double) sampleCountIn / sampleRateIn)
{
if (useThisPlayhead)
processor.setPlayHead (this);
}
~PlayHead() override
{
if (useThisPlayhead)
processor.setPlayHead (nullptr);
}
private:
Optional<PositionInfo> getPosition() const override
{
PositionInfo info;
info.setHostTimeNs (hostTimeNs);
info.setTimeInSamples ((int64_t) sampleCount);
info.setTimeInSeconds (seconds);
return info;
}
AudioProcessor& processor;
Optional<uint64_t> hostTimeNs;
uint64_t sampleCount;
double seconds;
bool useThisPlayhead = processor.getPlayHead() == nullptr;
};
PlayHead playHead { *processor,
context.hostTimeNs != nullptr ? makeOptional (*context.hostTimeNs) : nullopt,
sampleCount,
sampleRate };
sampleCount += (uint64_t) numSamples;
if (! processor->isSuspended())
{
if (processor->isUsingDoublePrecision())
{
conversionBuffer.makeCopyOf (buffer, true);
processor->processBlock (conversionBuffer, incomingMidi);
buffer.makeCopyOf (conversionBuffer, true);
}
else
{
processor->processBlock (buffer, incomingMidi);
}
if (midiOutput != nullptr)
{
if (midiOutput->isBackgroundThreadRunning())
{
midiOutput->sendBlockOfMessages (incomingMidi,
Time::getMillisecondCounterHiRes(),
sampleRate);
}
else
{
midiOutput->sendBlockOfMessagesNow (incomingMidi);
}
}
return;
}
}
for (int i = 0; i < numOutputChannels; ++i)
FloatVectorOperations::clear (outputChannelData[i], numSamples);
}
void AudioProcessorPlayer::audioDeviceAboutToStart (AudioIODevice* const device)
{
currentDevice = device;
auto newSampleRate = device->getCurrentSampleRate();
auto newBlockSize = device->getCurrentBufferSizeSamples();
auto numChansIn = device->getActiveInputChannels().countNumberOfSetBits();
auto numChansOut = device->getActiveOutputChannels().countNumberOfSetBits();
const ScopedLock sl (lock);
sampleRate = newSampleRate;
blockSize = newBlockSize;
deviceChannels = { numChansIn, numChansOut };
resizeChannels();
messageCollector.reset (sampleRate);
currentWorkgroup.reset();
if (processor != nullptr)
{
if (isPrepared)
processor->releaseResources();
auto* oldProcessor = processor;
setProcessor (nullptr);
setProcessor (oldProcessor);
}
}
void AudioProcessorPlayer::audioDeviceStopped()
{
const ScopedLock sl (lock);
if (processor != nullptr && isPrepared)
processor->releaseResources();
sampleRate = 0.0;
blockSize = 0;
isPrepared = false;
tempBuffer.setSize (1, 1);
currentDevice = nullptr;
currentWorkgroup.reset();
}
void AudioProcessorPlayer::handleIncomingMidiMessage (MidiInput*, const MidiMessage& message)
{
messageCollector.addMessageToQueue (message);
}
//==============================================================================
//==============================================================================
#if JUCE_UNIT_TESTS
struct AudioProcessorPlayerTests final : public UnitTest
{
AudioProcessorPlayerTests()
: UnitTest ("AudioProcessorPlayer", UnitTestCategories::audio) {}
void runTest() override
{
struct Layout
{
int numIns, numOuts;
};
const Layout processorLayouts[] { Layout { 0, 0 },
Layout { 1, 1 },
Layout { 4, 4 },
Layout { 4, 8 },
Layout { 8, 4 } };
beginTest ("Buffers are prepared correctly for a variety of channel layouts");
{
for (const auto& layout : processorLayouts)
{
for (const auto numSystemInputs : { 0, 1, layout.numIns })
{
const int numSamples = 256;
const auto systemIns = getTestBuffer (numSystemInputs, numSamples);
auto systemOuts = getTestBuffer (layout.numOuts, numSamples);
AudioBuffer<float> tempBuffer (jmax (layout.numIns, layout.numOuts), numSamples);
std::vector<float*> channels ((size_t) jmax (layout.numIns, layout.numOuts), nullptr);
initialiseIoBuffers ({ systemIns.getArrayOfReadPointers(), systemIns.getNumChannels() },
{ systemOuts.getArrayOfWritePointers(), systemOuts.getNumChannels() },
numSamples,
layout.numIns,
layout.numOuts,
tempBuffer,
channels);
int channelIndex = 0;
for (const auto& channel : channels)
{
const auto value = [&]
{
// Any channels past the number of inputs should be silent.
if (layout.numIns <= channelIndex)
return 0.0f;
// If there's no input, all input channels should be silent.
if (numSystemInputs == 0) return 0.0f;
// If there's one input, all input channels should copy from that input.
if (numSystemInputs == 1) return 1.0f;
// Otherwise, each processor input should match the corresponding system input.
return (float) (channelIndex + 1);
}();
expect (FloatVectorOperations::findMinAndMax (channel, numSamples) == Range<float> (value, value));
channelIndex += 1;
}
}
}
}
}
static AudioBuffer<float> getTestBuffer (int numChannels, int numSamples)
{
AudioBuffer<float> result (numChannels, numSamples);
for (int i = 0; i < result.getNumChannels(); ++i)
FloatVectorOperations::fill (result.getWritePointer (i), (float) i + 1, result.getNumSamples());
return result;
}
};
static AudioProcessorPlayerTests audioProcessorPlayerTests;
#endif
} // namespace juce