mirror of
https://github.com/juce-framework/JUCE.git
synced 2026-01-09 23:34:20 +00:00
On at least iOS 26 using a temporary window frame is unreliable. This change tries to use an existing window for any non-standalone app. It also updates the details on any changes, such as when the device orientation changes.
447 lines
16 KiB
C++
447 lines
16 KiB
C++
/*
|
|
==============================================================================
|
|
|
|
This file is part of the JUCE framework.
|
|
Copyright (c) Raw Material Software Limited
|
|
|
|
JUCE is an open source framework subject to commercial or open source
|
|
licensing.
|
|
|
|
By downloading, installing, or using the JUCE framework, or combining the
|
|
JUCE framework with any other source code, object code, content or any other
|
|
copyrightable work, you agree to the terms of the JUCE End User Licence
|
|
Agreement, and all incorporated terms including the JUCE Privacy Policy and
|
|
the JUCE Website Terms of Service, as applicable, which will bind you. If you
|
|
do not agree to the terms of these agreements, we will not license the JUCE
|
|
framework to you, and you must discontinue the installation or download
|
|
process and cease use of the JUCE framework.
|
|
|
|
JUCE End User Licence Agreement: https://juce.com/legal/juce-8-licence/
|
|
JUCE Privacy Policy: https://juce.com/juce-privacy-policy
|
|
JUCE Website Terms of Service: https://juce.com/juce-website-terms-of-service/
|
|
|
|
Or:
|
|
|
|
You may also use this code under the terms of the AGPLv3:
|
|
https://www.gnu.org/licenses/agpl-3.0.en.html
|
|
|
|
THE JUCE FRAMEWORK IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL
|
|
WARRANTIES, WHETHER EXPRESSED OR IMPLIED, INCLUDING WARRANTY OF
|
|
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED.
|
|
|
|
==============================================================================
|
|
*/
|
|
|
|
namespace juce
|
|
{
|
|
|
|
Displays::Displays (const Desktop& desktop)
|
|
{
|
|
init (desktop);
|
|
}
|
|
|
|
void Displays::init (const Desktop& desktop)
|
|
{
|
|
findDisplays (desktop);
|
|
}
|
|
|
|
const Displays::Display* Displays::getDisplayForRect (Rectangle<int> rect, bool isPhysical) const noexcept
|
|
{
|
|
int maxArea = -1;
|
|
const Display* foundDisplay = nullptr;
|
|
|
|
for (auto& display : displays)
|
|
{
|
|
auto displayArea = display.totalArea;
|
|
|
|
if (isPhysical)
|
|
displayArea = (displayArea.withZeroOrigin() * display.scale) + display.topLeftPhysical;
|
|
|
|
displayArea = displayArea.getIntersection (rect);
|
|
auto area = displayArea.getWidth() * displayArea.getHeight();
|
|
|
|
if (area >= maxArea)
|
|
{
|
|
maxArea = area;
|
|
foundDisplay = &display;
|
|
}
|
|
}
|
|
|
|
return foundDisplay;
|
|
}
|
|
|
|
const Displays::Display* Displays::getDisplayForPoint (Point<int> point, bool isPhysical) const noexcept
|
|
{
|
|
auto minDistance = std::numeric_limits<int>::max();
|
|
const Display* foundDisplay = nullptr;
|
|
|
|
for (auto& display : displays)
|
|
{
|
|
auto displayArea = display.totalArea;
|
|
|
|
if (isPhysical)
|
|
displayArea = (displayArea.withZeroOrigin() * display.scale) + display.topLeftPhysical;
|
|
|
|
if (displayArea.contains (point))
|
|
return &display;
|
|
|
|
auto distance = displayArea.getCentre().getDistanceFrom (point);
|
|
|
|
if (distance <= minDistance)
|
|
{
|
|
minDistance = distance;
|
|
foundDisplay = &display;
|
|
}
|
|
}
|
|
|
|
return foundDisplay;
|
|
}
|
|
|
|
Rectangle<int> Displays::physicalToLogical (Rectangle<int> rect, const Display* useScaleFactorOfDisplay) const noexcept
|
|
{
|
|
return physicalToLogical (rect.toFloat(), useScaleFactorOfDisplay).toNearestInt();
|
|
}
|
|
|
|
Rectangle<float> Displays::physicalToLogical (Rectangle<float> rect, const Display* useScaleFactorOfDisplay) const noexcept
|
|
{
|
|
const auto* display = useScaleFactorOfDisplay != nullptr ? useScaleFactorOfDisplay
|
|
: getDisplayForRect (rect.toNearestInt(), true);
|
|
|
|
if (display == nullptr)
|
|
return rect;
|
|
|
|
auto globalScale = Desktop::getInstance().getGlobalScaleFactor();
|
|
|
|
return ((rect - display->topLeftPhysical.toFloat()) / (display->scale / globalScale))
|
|
+ (display->totalArea.getTopLeft().toFloat() * globalScale);
|
|
}
|
|
|
|
Rectangle<int> Displays::logicalToPhysical (Rectangle<int> rect, const Display* useScaleFactorOfDisplay) const noexcept
|
|
{
|
|
return logicalToPhysical (rect.toFloat(), useScaleFactorOfDisplay).toNearestInt();
|
|
}
|
|
|
|
Rectangle<float> Displays::logicalToPhysical (Rectangle<float> rect, const Display* useScaleFactorOfDisplay) const noexcept
|
|
{
|
|
const auto* display = useScaleFactorOfDisplay != nullptr ? useScaleFactorOfDisplay
|
|
: getDisplayForRect (rect.toNearestInt(), false);
|
|
|
|
if (display == nullptr)
|
|
return rect;
|
|
|
|
auto globalScale = Desktop::getInstance().getGlobalScaleFactor();
|
|
|
|
return ((rect.toFloat() - (display->totalArea.getTopLeft().toFloat() * globalScale)) * (display->scale / globalScale))
|
|
+ display->topLeftPhysical.toFloat();
|
|
}
|
|
|
|
template <typename ValueType>
|
|
Point<ValueType> Displays::physicalToLogical (Point<ValueType> point, const Display* useScaleFactorOfDisplay) const noexcept
|
|
{
|
|
const auto* display = useScaleFactorOfDisplay != nullptr ? useScaleFactorOfDisplay
|
|
: getDisplayForPoint (point.roundToInt(), true);
|
|
|
|
if (display == nullptr)
|
|
return point;
|
|
|
|
auto globalScale = Desktop::getInstance().getGlobalScaleFactor();
|
|
|
|
Point<ValueType> logicalTopLeft (static_cast<ValueType> (display->totalArea.getX()), static_cast<ValueType> (display->totalArea.getY()));
|
|
Point<ValueType> physicalTopLeft (static_cast<ValueType> (display->topLeftPhysical.getX()), static_cast<ValueType> (display->topLeftPhysical.getY()));
|
|
|
|
return ((point - physicalTopLeft) / (display->scale / globalScale)) + (logicalTopLeft * globalScale);
|
|
}
|
|
|
|
template <typename ValueType>
|
|
Point<ValueType> Displays::logicalToPhysical (Point<ValueType> point, const Display* useScaleFactorOfDisplay) const noexcept
|
|
{
|
|
const auto* display = useScaleFactorOfDisplay != nullptr ? useScaleFactorOfDisplay
|
|
: getDisplayForPoint (point.roundToInt(), false);
|
|
|
|
if (display == nullptr)
|
|
return point;
|
|
|
|
auto globalScale = Desktop::getInstance().getGlobalScaleFactor();
|
|
|
|
Point<ValueType> logicalTopLeft (static_cast<ValueType> (display->totalArea.getX()), static_cast<ValueType> (display->totalArea.getY()));
|
|
Point<ValueType> physicalTopLeft (static_cast<ValueType> (display->topLeftPhysical.getX()), static_cast<ValueType> (display->topLeftPhysical.getY()));
|
|
|
|
return ((point - (logicalTopLeft * globalScale)) * (display->scale / globalScale)) + physicalTopLeft;
|
|
}
|
|
|
|
const Displays::Display* Displays::getPrimaryDisplay() const noexcept
|
|
{
|
|
JUCE_ASSERT_MESSAGE_MANAGER_IS_LOCKED
|
|
|
|
const auto iter = std::find_if (displays.begin(), displays.end(), [] (auto& d) { return d.isMain; });
|
|
return iter != displays.end() ? iter : nullptr;
|
|
}
|
|
|
|
RectangleList<int> Displays::getRectangleList (bool userAreasOnly) const
|
|
{
|
|
JUCE_ASSERT_MESSAGE_MANAGER_IS_LOCKED
|
|
RectangleList<int> rl;
|
|
|
|
for (auto& d : displays)
|
|
rl.addWithoutMerging (userAreasOnly ? d.userArea : d.totalArea);
|
|
|
|
return rl;
|
|
}
|
|
|
|
Rectangle<int> Displays::getTotalBounds (bool userAreasOnly) const
|
|
{
|
|
return getRectangleList (userAreasOnly).getBounds();
|
|
}
|
|
|
|
void Displays::refresh()
|
|
{
|
|
Array<Display> oldDisplays;
|
|
oldDisplays.swapWith (displays);
|
|
|
|
init (Desktop::getInstance());
|
|
|
|
if (oldDisplays != displays)
|
|
{
|
|
for (auto i = ComponentPeer::getNumPeers(); --i >= 0;)
|
|
if (auto* peer = ComponentPeer::getPeer (i))
|
|
peer->handleScreenSizeChange();
|
|
}
|
|
}
|
|
|
|
static auto tie (const Displays::Display& d)
|
|
{
|
|
return std::tie (d.dpi,
|
|
d.isMain,
|
|
d.keyboardInsets,
|
|
d.safeAreaInsets,
|
|
d.scale,
|
|
d.topLeftPhysical,
|
|
d.totalArea,
|
|
d.userArea);
|
|
}
|
|
|
|
static bool operator== (const Displays::Display& d1, const Displays::Display& d2) noexcept
|
|
{
|
|
return tie (d1) == tie (d2);
|
|
}
|
|
|
|
//==============================================================================
|
|
// These methods are used for converting the totalArea and userArea Rectangles in Display from physical to logical
|
|
// pixels. We do this by constructing a graph of connected displays where the root node has position (0, 0); this can be
|
|
// safely converted to logical pixels using its scale factor and we can then traverse the graph and work out the logical pixels
|
|
// for all the other connected displays. We need to do this as the logical bounds of a display depend not only on its scale
|
|
// factor but also the scale factor of the displays connected to it.
|
|
|
|
/**
|
|
Represents a node in our graph of displays.
|
|
*/
|
|
struct DisplayNode
|
|
{
|
|
/** The Display object that this represents. */
|
|
Displays::Display* display;
|
|
|
|
/** True if this represents the 'root' display with position (0, 0). */
|
|
bool isRoot = false;
|
|
|
|
/** The parent node of this node in our display graph. This will have a correct logicalArea. */
|
|
DisplayNode* parent = nullptr;
|
|
|
|
/** The logical area to be calculated. This will be valid after processDisplay() has
|
|
been called on this node.
|
|
*/
|
|
Rectangle<double> logicalArea;
|
|
};
|
|
|
|
/** Recursive - will calculate and set the logicalArea member of current. */
|
|
static void processDisplay (DisplayNode* currentNode, Array<DisplayNode>& allNodes)
|
|
{
|
|
const auto physicalArea = currentNode->display->totalArea.toDouble();
|
|
const auto scale = currentNode->display->scale;
|
|
|
|
if (! currentNode->isRoot)
|
|
{
|
|
const auto logicalWidth = physicalArea.getWidth() / scale;
|
|
const auto logicalHeight = physicalArea.getHeight() / scale;
|
|
|
|
const auto physicalParentArea = currentNode->parent->display->totalArea.toDouble();
|
|
const auto logicalParentArea = currentNode->parent->logicalArea; // logical area of parent has already been calculated
|
|
const auto parentScale = currentNode->parent->display->scale;
|
|
|
|
Rectangle<double> logicalArea (0.0, 0.0, logicalWidth, logicalHeight);
|
|
|
|
if (approximatelyEqual (physicalArea.getRight(), physicalParentArea.getX())) logicalArea.setPosition ({ logicalParentArea.getX() - logicalWidth, physicalArea.getY() / parentScale }); // on left
|
|
else if (approximatelyEqual (physicalArea.getX(), physicalParentArea.getRight())) logicalArea.setPosition ({ logicalParentArea.getRight(), physicalArea.getY() / parentScale }); // on right
|
|
else if (approximatelyEqual (physicalArea.getBottom(), physicalParentArea.getY())) logicalArea.setPosition ({ physicalArea.getX() / parentScale, logicalParentArea.getY() - logicalHeight }); // on top
|
|
else if (approximatelyEqual (physicalArea.getY(), physicalParentArea.getBottom())) logicalArea.setPosition ({ physicalArea.getX() / parentScale, logicalParentArea.getBottom() }); // on bottom
|
|
else jassertfalse;
|
|
|
|
currentNode->logicalArea = logicalArea;
|
|
}
|
|
else
|
|
{
|
|
// If currentNode is the root (position (0, 0)) then we can just scale the physical area
|
|
currentNode->logicalArea = physicalArea / scale;
|
|
currentNode->parent = currentNode;
|
|
}
|
|
|
|
// Find child nodes
|
|
Array<DisplayNode*> children;
|
|
for (auto& node : allNodes)
|
|
{
|
|
// Already calculated
|
|
if (node.parent != nullptr)
|
|
continue;
|
|
|
|
const auto otherPhysicalArea = node.display->totalArea.toDouble();
|
|
|
|
// If the displays are touching on any side
|
|
if (approximatelyEqual (otherPhysicalArea.getX(), physicalArea.getRight()) || approximatelyEqual (otherPhysicalArea.getRight(), physicalArea.getX())
|
|
|| approximatelyEqual (otherPhysicalArea.getY(), physicalArea.getBottom()) || approximatelyEqual (otherPhysicalArea.getBottom(), physicalArea.getY()))
|
|
{
|
|
node.parent = currentNode;
|
|
children.add (&node);
|
|
}
|
|
}
|
|
|
|
// Recursively process all child nodes
|
|
for (auto child : children)
|
|
processDisplay (child, allNodes);
|
|
}
|
|
|
|
/** This is called when the displays Array has been filled out with the info for all connected displays and the
|
|
totalArea and userArea Rectangles need to be converted from physical to logical coordinates.
|
|
*/
|
|
void Displays::updateToLogical()
|
|
{
|
|
if (displays.size() == 1)
|
|
{
|
|
auto& display = displays.getReference (0);
|
|
|
|
display.totalArea = (display.totalArea.toDouble() / display.scale).toNearestInt();
|
|
display.userArea = (display.userArea.toDouble() / display.scale).toNearestInt();
|
|
|
|
return;
|
|
}
|
|
|
|
Array<DisplayNode> displayNodes;
|
|
|
|
for (auto& d : displays)
|
|
{
|
|
DisplayNode node;
|
|
|
|
node.display = &d;
|
|
|
|
if (d.totalArea.getTopLeft() == Point<int>())
|
|
node.isRoot = true;
|
|
|
|
displayNodes.add (node);
|
|
}
|
|
|
|
auto* root = [&displayNodes]() -> DisplayNode*
|
|
{
|
|
for (auto& node : displayNodes)
|
|
if (node.isRoot)
|
|
return &node;
|
|
|
|
auto minDistance = std::numeric_limits<int>::max();
|
|
DisplayNode* retVal = nullptr;
|
|
|
|
for (auto& node : displayNodes)
|
|
{
|
|
auto distance = node.display->totalArea.getTopLeft().getDistanceFrom ({});
|
|
|
|
if (distance < minDistance)
|
|
{
|
|
minDistance = distance;
|
|
retVal = &node;
|
|
}
|
|
}
|
|
|
|
if (retVal != nullptr)
|
|
retVal->isRoot = true;
|
|
|
|
return retVal;
|
|
}();
|
|
|
|
// Must have a root node!
|
|
jassert (root != nullptr);
|
|
|
|
// Recursively traverse the display graph from the root and work out logical bounds
|
|
processDisplay (root, displayNodes);
|
|
|
|
for (auto& node : displayNodes)
|
|
{
|
|
// All of the nodes should have a parent
|
|
jassert (node.parent != nullptr);
|
|
|
|
auto relativeUserArea = (node.display->userArea.toDouble() - node.display->totalArea.toDouble().getTopLeft()) / node.display->scale;
|
|
|
|
// Now set Display::totalArea and ::userArea using the logical area that we have calculated
|
|
node.display->topLeftPhysical = node.display->totalArea.getTopLeft();
|
|
node.display->totalArea = node.logicalArea.toNearestInt();
|
|
node.display->userArea = (relativeUserArea + node.logicalArea.getTopLeft()).toNearestInt();
|
|
}
|
|
}
|
|
|
|
/** @cond */
|
|
// explicit template instantiations
|
|
template Point<int> Displays::physicalToLogical (Point<int>, const Display*) const noexcept;
|
|
template Point<float> Displays::physicalToLogical (Point<float>, const Display*) const noexcept;
|
|
|
|
template Point<int> Displays::logicalToPhysical (Point<int>, const Display*) const noexcept;
|
|
template Point<float> Displays::logicalToPhysical (Point<float>, const Display*) const noexcept;
|
|
/** @endcond */
|
|
|
|
//==============================================================================
|
|
// Deprecated methods
|
|
const Displays::Display& Displays::getDisplayContaining (Point<int> position) const noexcept
|
|
{
|
|
JUCE_ASSERT_MESSAGE_MANAGER_IS_LOCKED
|
|
const auto* best = &displays.getReference (0);
|
|
auto bestDistance = std::numeric_limits<int>::max();
|
|
|
|
for (auto& d : displays)
|
|
{
|
|
if (d.totalArea.contains (position))
|
|
{
|
|
best = &d;
|
|
break;
|
|
}
|
|
|
|
auto distance = d.totalArea.getCentre().getDistanceFrom (position);
|
|
|
|
if (distance < bestDistance)
|
|
{
|
|
bestDistance = distance;
|
|
best = &d;
|
|
}
|
|
}
|
|
|
|
return *best;
|
|
}
|
|
|
|
const Displays::Display& Displays::findDisplayForRect (Rectangle<int> rect, bool isPhysical) const noexcept
|
|
{
|
|
if (auto* display = getDisplayForRect (rect, isPhysical))
|
|
return *display;
|
|
|
|
return emptyDisplay;
|
|
}
|
|
|
|
const Displays::Display& Displays::findDisplayForPoint (Point<int> point, bool isPhysical) const noexcept
|
|
{
|
|
if (auto* display = getDisplayForPoint (point, isPhysical))
|
|
return *display;
|
|
|
|
return emptyDisplay;
|
|
}
|
|
|
|
const Displays::Display& Displays::getMainDisplay() const noexcept
|
|
{
|
|
if (auto* display = getPrimaryDisplay())
|
|
return *display;
|
|
|
|
return emptyDisplay;
|
|
}
|
|
|
|
} // namespace juce
|