1
0
Fork 0
mirror of https://github.com/juce-framework/JUCE.git synced 2026-01-09 23:34:20 +00:00
JUCE/modules/juce_dsp/maths/juce_LogRampedValue.h
2024-04-16 11:39:35 +01:00

195 lines
6.9 KiB
C++

/*
==============================================================================
This file is part of the JUCE framework.
Copyright (c) Raw Material Software Limited
JUCE is an open source framework subject to commercial or open source
licensing.
By downloading, installing, or using the JUCE framework, or combining the
JUCE framework with any other source code, object code, content or any other
copyrightable work, you agree to the terms of the JUCE End User Licence
Agreement, and all incorporated terms including the JUCE Privacy Policy and
the JUCE Website Terms of Service, as applicable, which will bind you. If you
do not agree to the terms of these agreements, we will not license the JUCE
framework to you, and you must discontinue the installation or download
process and cease use of the JUCE framework.
JUCE End User Licence Agreement: https://juce.com/legal/juce-8-licence/
JUCE Privacy Policy: https://juce.com/juce-privacy-policy
JUCE Website Terms of Service: https://juce.com/juce-website-terms-of-service/
Or:
You may also use this code under the terms of the AGPLv3:
https://www.gnu.org/licenses/agpl-3.0.en.html
THE JUCE FRAMEWORK IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL
WARRANTIES, WHETHER EXPRESSED OR IMPLIED, INCLUDING WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED.
==============================================================================
*/
namespace juce::dsp
{
//==============================================================================
/**
Utility class for logarithmically smoothed linear values.
Logarithmically smoothed values can be more relevant than linear ones for
specific cases such as algorithm change smoothing, using two of them in
opposite directions.
The gradient of the logarithmic/exponential slope can be configured by
calling LogRampedValue::setLogParameters.
@see SmoothedValue
@tags{DSP}
*/
template <typename FloatType>
class LogRampedValue : public SmoothedValueBase <LogRampedValue <FloatType>>
{
public:
//==============================================================================
/** Constructor. */
LogRampedValue() = default;
/** Constructor. */
LogRampedValue (FloatType initialValue) noexcept
{
// Visual Studio can't handle base class initialisation with CRTP
this->currentValue = initialValue;
this->target = initialValue;
}
//==============================================================================
/** Sets the behaviour of the log ramp.
@param midPointAmplitudedB Sets the amplitude of the mid point in
decibels, with the target value at 0 dB
and the initial value at -inf dB
@param rateOfChangeShouldIncrease If true then the ramp starts shallow
and gets progressively steeper, if false
then the ramp is initially steep and
flattens out as you approach the target
value
*/
void setLogParameters (FloatType midPointAmplitudedB, bool rateOfChangeShouldIncrease) noexcept
{
jassert (midPointAmplitudedB < (FloatType) 0.0);
B = Decibels::decibelsToGain (midPointAmplitudedB);
increasingRateOfChange = rateOfChangeShouldIncrease;
}
//==============================================================================
/** Reset to a new sample rate and ramp length.
@param sampleRate The sample rate
@param rampLengthInSeconds The duration of the ramp in seconds
*/
void reset (double sampleRate, double rampLengthInSeconds) noexcept
{
jassert (sampleRate > 0 && rampLengthInSeconds >= 0);
reset ((int) std::floor (rampLengthInSeconds * sampleRate));
}
/** Set a new ramp length directly in samples.
@param numSteps The number of samples over which the ramp should be active
*/
void reset (int numSteps) noexcept
{
stepsToTarget = numSteps;
this->setCurrentAndTargetValue (this->target);
updateRampParameters();
}
//==============================================================================
/** Set a new target value.
@param newValue The new target value
*/
void setTargetValue (FloatType newValue) noexcept
{
if (approximatelyEqual (newValue, this->target))
return;
if (stepsToTarget <= 0)
{
this->setCurrentAndTargetValue (newValue);
return;
}
this->target = newValue;
this->countdown = stepsToTarget;
source = this->currentValue;
updateRampParameters();
}
//==============================================================================
/** Compute the next value.
@returns Smoothed value
*/
FloatType getNextValue() noexcept
{
if (! this->isSmoothing())
return this->target;
--(this->countdown);
temp *= r; temp += d;
this->currentValue = jmap (temp, source, this->target);
return this->currentValue;
}
//==============================================================================
/** Skip the next numSamples samples.
This is identical to calling getNextValue numSamples times.
@see getNextValue
*/
FloatType skip (int numSamples) noexcept
{
if (numSamples >= this->countdown)
{
this->setCurrentAndTargetValue (this->target);
return this->target;
}
this->countdown -= numSamples;
auto rN = (FloatType) std::pow (r, numSamples);
temp *= rN;
temp += d * (rN - (FloatType) 1) / (r - (FloatType) 1);
this->currentValue = jmap (temp, source, this->target);
return this->currentValue;
}
private:
//==============================================================================
void updateRampParameters()
{
auto D = increasingRateOfChange ? B : (FloatType) 1 - B;
auto base = ((FloatType) 1 / D) - (FloatType) 1;
r = std::pow (base, (FloatType) 2 / (FloatType) stepsToTarget);
auto rN = std::pow (r, (FloatType) stepsToTarget);
d = (r - (FloatType) 1) / (rN - (FloatType) 1);
temp = 0;
}
//==============================================================================
bool increasingRateOfChange = true;
FloatType B = Decibels::decibelsToGain ((FloatType) -40);
int stepsToTarget = 0;
FloatType temp = 0, source = 0, r = 0, d = 1;
};
} // namespace juce::dsp