/* ============================================================================== This file is part of the JUCE framework. Copyright (c) Raw Material Software Limited JUCE is an open source framework subject to commercial or open source licensing. By downloading, installing, or using the JUCE framework, or combining the JUCE framework with any other source code, object code, content or any other copyrightable work, you agree to the terms of the JUCE End User Licence Agreement, and all incorporated terms including the JUCE Privacy Policy and the JUCE Website Terms of Service, as applicable, which will bind you. If you do not agree to the terms of these agreements, we will not license the JUCE framework to you, and you must discontinue the installation or download process and cease use of the JUCE framework. JUCE End User Licence Agreement: https://juce.com/legal/juce-8-licence/ JUCE Privacy Policy: https://juce.com/juce-privacy-policy JUCE Website Terms of Service: https://juce.com/juce-website-terms-of-service/ Or: You may also use this code under the terms of the AGPLv3: https://www.gnu.org/licenses/agpl-3.0.en.html THE JUCE FRAMEWORK IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER EXPRESSED OR IMPLIED, INCLUDING WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. ============================================================================== */ namespace juce::dsp { //============================================================================== /** Utility class for logarithmically smoothed linear values. Logarithmically smoothed values can be more relevant than linear ones for specific cases such as algorithm change smoothing, using two of them in opposite directions. The gradient of the logarithmic/exponential slope can be configured by calling LogRampedValue::setLogParameters. @see SmoothedValue @tags{DSP} */ template class LogRampedValue : public SmoothedValueBase > { public: //============================================================================== /** Constructor. */ LogRampedValue() = default; /** Constructor. */ LogRampedValue (FloatType initialValue) noexcept { // Visual Studio can't handle base class initialisation with CRTP this->currentValue = initialValue; this->target = initialValue; } //============================================================================== /** Sets the behaviour of the log ramp. @param midPointAmplitudedB Sets the amplitude of the mid point in decibels, with the target value at 0 dB and the initial value at -inf dB @param rateOfChangeShouldIncrease If true then the ramp starts shallow and gets progressively steeper, if false then the ramp is initially steep and flattens out as you approach the target value */ void setLogParameters (FloatType midPointAmplitudedB, bool rateOfChangeShouldIncrease) noexcept { jassert (midPointAmplitudedB < (FloatType) 0.0); B = Decibels::decibelsToGain (midPointAmplitudedB); increasingRateOfChange = rateOfChangeShouldIncrease; } //============================================================================== /** Reset to a new sample rate and ramp length. @param sampleRate The sample rate @param rampLengthInSeconds The duration of the ramp in seconds */ void reset (double sampleRate, double rampLengthInSeconds) noexcept { jassert (sampleRate > 0 && rampLengthInSeconds >= 0); reset ((int) std::floor (rampLengthInSeconds * sampleRate)); } /** Set a new ramp length directly in samples. @param numSteps The number of samples over which the ramp should be active */ void reset (int numSteps) noexcept { stepsToTarget = numSteps; this->setCurrentAndTargetValue (this->target); updateRampParameters(); } //============================================================================== /** Set a new target value. @param newValue The new target value */ void setTargetValue (FloatType newValue) noexcept { if (approximatelyEqual (newValue, this->target)) return; if (stepsToTarget <= 0) { this->setCurrentAndTargetValue (newValue); return; } this->target = newValue; this->countdown = stepsToTarget; source = this->currentValue; updateRampParameters(); } //============================================================================== /** Compute the next value. @returns Smoothed value */ FloatType getNextValue() noexcept { if (! this->isSmoothing()) return this->target; --(this->countdown); temp *= r; temp += d; this->currentValue = jmap (temp, source, this->target); return this->currentValue; } //============================================================================== /** Skip the next numSamples samples. This is identical to calling getNextValue numSamples times. @see getNextValue */ FloatType skip (int numSamples) noexcept { if (numSamples >= this->countdown) { this->setCurrentAndTargetValue (this->target); return this->target; } this->countdown -= numSamples; auto rN = (FloatType) std::pow (r, numSamples); temp *= rN; temp += d * (rN - (FloatType) 1) / (r - (FloatType) 1); this->currentValue = jmap (temp, source, this->target); return this->currentValue; } private: //============================================================================== void updateRampParameters() { auto D = increasingRateOfChange ? B : (FloatType) 1 - B; auto base = ((FloatType) 1 / D) - (FloatType) 1; r = std::pow (base, (FloatType) 2 / (FloatType) stepsToTarget); auto rN = std::pow (r, (FloatType) stepsToTarget); d = (r - (FloatType) 1) / (rN - (FloatType) 1); temp = 0; } //============================================================================== bool increasingRateOfChange = true; FloatType B = Decibels::decibelsToGain ((FloatType) -40); int stepsToTarget = 0; FloatType temp = 0, source = 0, r = 0, d = 1; }; } // namespace juce::dsp