/* ============================================================================== This file is part of the JUCE framework. Copyright (c) Raw Material Software Limited JUCE is an open source framework subject to commercial or open source licensing. By downloading, installing, or using the JUCE framework, or combining the JUCE framework with any other source code, object code, content or any other copyrightable work, you agree to the terms of the JUCE End User Licence Agreement, and all incorporated terms including the JUCE Privacy Policy and the JUCE Website Terms of Service, as applicable, which will bind you. If you do not agree to the terms of these agreements, we will not license the JUCE framework to you, and you must discontinue the installation or download process and cease use of the JUCE framework. JUCE End User Licence Agreement: https://juce.com/legal/juce-8-licence/ JUCE Privacy Policy: https://juce.com/juce-privacy-policy JUCE Website Terms of Service: https://juce.com/juce-website-terms-of-service/ Or: You may also use this code under the terms of the AGPLv3: https://www.gnu.org/licenses/agpl-3.0.en.html THE JUCE FRAMEWORK IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER EXPRESSED OR IMPLIED, INCLUDING WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. ============================================================================== */ namespace juce { //============================================================================== /* A collection of methods and types for breaking down text into a unicode representation. */ class Unicode { struct Key { String text; std::optional directionOverride; auto tie() const { return std::tie (text, directionOverride); } bool operator< (const Key& other) const { return tie() < other.tie(); } }; public: Unicode() = delete; //============================================================================== /* A unicode Codepoint, from this you can infer various Unicode properties such as direction, logical string index and breaking type, etc. */ struct Codepoint { uint32_t codepoint; size_t logicalIndex; // Index of the character in the source string size_t visualIndex; TextBreakType breaking; // Breaking characteristics of this codepoint TextDirection direction; // Direction of this codepoint TextScript script; // Script class for this codepoint }; template static auto prefix (Span v, size_t num) { return Span { v.data(), std::min (v.size(), num) }; } template static auto removePrefix (Span v, size_t num) { const auto increment = std::min (v.size(), num); return Span { v.data() + increment, v.size() - increment }; } //============================================================================== /* Performs unicode analysis on a piece of text and returns an array of Codepoints in logical order. */ static Array performAnalysis (const String& string, std::optional textDirection = {}) { if (string.isEmpty()) return {}; thread_local LruCache> cache; return cache.get ({ string, textDirection }, analysisCallback); } //============================================================================== template struct Iterator { using ValueType = typename Traits::ValueType; Iterator() = default; explicit Iterator (Span s) : data (s) {} std::optional> next() { if (data.empty()) return {}; const auto breakpoint = std::find_if (data.begin(), data.end(), [&] (const auto& i) { return ! Traits::compare (i, data.front()); }); const auto lengthToBreak = (size_t) std::distance (data.begin(), breakpoint) + (Traits::includeBreakingIndex() ? 1 : 0); const ScopeGuard scope { [&] { data = removePrefix (data, lengthToBreak); } }; return prefix (data, lengthToBreak); } private: Span data; }; struct BidiTraits { using ValueType = const Codepoint; static bool compare (const Codepoint& t1, const Codepoint& t2) { return t1.direction == t2.direction; } static bool includeBreakingIndex() { return false; } }; using BidiRunIterator = Iterator; struct LineTraits { using ValueType = const Codepoint; static bool compare (const Codepoint& t1, const Codepoint&) { return t1.breaking != TextBreakType::hard; } static bool includeBreakingIndex() { return true; } }; using LineBreakIterator = Iterator; struct WordTraits { using ValueType = const Codepoint; static bool compare (const Codepoint& t1, const Codepoint&) { return t1.breaking != TextBreakType::soft; } static bool includeBreakingIndex() { return false; } }; using WordBreakIterator = Iterator; struct ScriptTraits { using ValueType = const Codepoint; static bool compare (const Codepoint& t1, const Codepoint& t2) { return t1.script == t2.script; } static bool includeBreakingIndex() { return false; } }; using ScriptRunIterator = Iterator; private: struct ParagraphIterator { explicit ParagraphIterator (Span Span) : data (Span) {} std::optional> next() { const auto start = head; auto end = start; if ((size_t) start >= data.size()) return std::nullopt; while ((size_t) end < data.size()) { constexpr auto paragraphSeparator = 0x2029; if (data[(size_t) end].character == paragraphSeparator) break; end++; } head = end + 1; return std::make_optional (Range { start, end }); } Span data; int head = 0; }; static Array analysisCallback (const Key& key) { auto analysisBuffer = [&key] { std::vector points; const auto data = key.text.toUTF32(); const auto length = data.length(); points.reserve (length); std::transform (data.getAddress(), data.getAddress() + length, std::back_inserter (points), [] (uint32_t cp) { UnicodeAnalysisPoint p { cp, UnicodeDataTable::getDataForCodepoint (cp) }; // Define this to enable TR9 debugging. All upper case // characters will be interpreted as right-to-left. #if defined (JUCE_TR9_UPPERCASE_IS_RTL) if (65 <= cp && cp <= 90) p.data.bidi = BidiType::al; #endif return p; }); return points; }(); Array result; result.resize ((int) analysisBuffer.size()); for (size_t i = 0; i < analysisBuffer.size(); i++) result.getReference ((int) i).codepoint = analysisBuffer[i].character; TR24::analyseScripts (analysisBuffer, [&result] (int index, TextScript script) { result.getReference (index).script = script; }); TR14::analyseLineBreaks (analysisBuffer, [&result] (int index, TextBreakType type) { result.getReference (index).breaking = type; }); ParagraphIterator iter { analysisBuffer }; TR9::BidiOutput bidiOutput; while (auto range = iter.next()) { const auto run = Span { analysisBuffer.data() + (size_t) range->getStart(), (size_t) range->getLength() }; TR9::analyseBidiRun (bidiOutput, run, key.directionOverride); for (size_t i = 0; i < (size_t) range->getLength(); i++) { auto& point = result.getReference ((int) i + range->getStart()); point.direction = bidiOutput.resolvedLevels[i] % 2 == 0 ? TextDirection::ltr : TextDirection::rtl; point.logicalIndex = (size_t) range->getStart() + i; point.visualIndex = (size_t) bidiOutput.visualOrder[i]; } } return result; } }; #if JUCE_UNIT_TESTS class NumericalVisualOrderTest : UnitTest { public: NumericalVisualOrderTest() : UnitTest ("NumericalVisualOrderTest", UnitTestCategories::text) { } void runTest() override { auto doTest = [this] (const String& text) { String visual; String logical; for (auto cp : Unicode::performAnalysis (text)) { visual << text[(int) cp.visualIndex]; logical << text[(int) cp.logicalIndex]; } beginTest (text); expectEquals (visual, logical); }; doTest ("12345"); doTest ("12345_00001"); doTest ("1_3(1)"); doTest ("-12323"); doTest ("8784-43_-33"); } }; static NumericalVisualOrderTest visualOrderTest; #endif } // namespace juce