/* ============================================================================== This file is part of the JUCE library. Copyright (c) 2017 - ROLI Ltd. JUCE is an open source library subject to commercial or open-source licensing. By using JUCE, you agree to the terms of both the JUCE 5 End-User License Agreement and JUCE 5 Privacy Policy (both updated and effective as of the 27th April 2017). End User License Agreement: www.juce.com/juce-5-licence Privacy Policy: www.juce.com/juce-5-privacy-policy Or: You may also use this code under the terms of the GPL v3 (see www.gnu.org/licenses). JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE DISCLAIMED. ============================================================================== */ //=============================================================================== /** Abstract class for the provided oversampling engines used internally in the Oversampling class. */ template class OversamplingEngine { public: //=============================================================================== OversamplingEngine (size_t newFactor) { factor = newFactor; } virtual ~OversamplingEngine() {} //=============================================================================== virtual SampleType getLatencyInSamples() = 0; size_t getFactor() { return factor; } virtual void initProcessing (size_t maximumNumberOfSamplesBeforeOversampling) { buffer.setSize (1, static_cast (maximumNumberOfSamplesBeforeOversampling * factor)); } virtual void reset() { buffer.clear(); } SampleType* getProcessedSamples() { return buffer.getWritePointer (0); } size_t getNumProcessedSamples() { return static_cast (buffer.getNumSamples()); } virtual void processSamplesUp (SampleType *samples, size_t numSamples) = 0; virtual void processSamplesDown (SampleType *samples, size_t numSamples) = 0; protected: //=============================================================================== AudioBuffer buffer; size_t factor; }; //=============================================================================== /** Dummy oversampling engine class which simply copies and pastes the input signal, which could be equivalent to a "one time" oversampling processing. */ template class OversamplingDummy : public OversamplingEngine { public: //=============================================================================== OversamplingDummy() : OversamplingEngine(1) {} ~OversamplingDummy() {} //=============================================================================== SampleType getLatencyInSamples() override { return 0.f; } void processSamplesUp (SampleType *samples, size_t numSamples) override { auto bufferSamples = this->buffer.getWritePointer (0); for (size_t i = 0; i < numSamples; i++) bufferSamples[i] = samples[i]; } void processSamplesDown (SampleType *samples, size_t numSamples) override { auto bufferSamples = OversamplingEngine::buffer.getWritePointer (0); for (size_t i = 0; i < numSamples; i++) samples[i] = bufferSamples[i]; } private: //=============================================================================== JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (OversamplingDummy) }; //=============================================================================== /** Oversampling engine class performing 2 times oversampling using the Filter Design FIR Equiripple method. The resulting filter is linear phase, symmetric, and has every two samples but the middle one equal to zero, leading to specific processing optimizations. */ template class Oversampling2TimesEquirippleFIR : public OversamplingEngine { public: //=============================================================================== Oversampling2TimesEquirippleFIR (SampleType normalizedTransitionWidthUp, SampleType stopbandAttenuationdBUp, SampleType normalizedTransitionWidthDown, SampleType stopbandAttenuationdBDown) : OversamplingEngine (2) { coefficientsUp = *dsp::FilterDesign::designFIRLowpassHalfBandEquirippleMethod (normalizedTransitionWidthUp, stopbandAttenuationdBUp); coefficientsDown = *dsp::FilterDesign::designFIRLowpassHalfBandEquirippleMethod (normalizedTransitionWidthDown, stopbandAttenuationdBDown); auto N = coefficientsDown.getFilterOrder() + 1; auto Ndiv2 = N / 2; auto Ndiv4 = Ndiv2 / 2; stateUp.setSize (1, static_cast (coefficientsUp.getFilterOrder() + 1)); stateDown.setSize (1, static_cast (N)); stateDown2.setSize (1, static_cast (Ndiv4)); } ~Oversampling2TimesEquirippleFIR() {} //=============================================================================== SampleType getLatencyInSamples() override { return static_cast (coefficientsUp.getFilterOrder() + coefficientsDown.getFilterOrder()); } void reset() override { OversamplingEngine::reset(); stateUp.clear(); stateDown.clear(); stateDown2.clear(); position = 0; } void processSamplesUp (SampleType *samples, size_t numSamples) override { // Initialization auto bufferSamples = OversamplingEngine::buffer.getWritePointer (0); auto fir = coefficientsUp.getRawCoefficients(); auto buf = stateUp.getWritePointer (0); auto N = coefficientsUp.getFilterOrder() + 1; auto Ndiv2 = N / 2; // Processing for (size_t i = 0; i < numSamples; i++) { // Input buf[N - 1] = 2 * samples[i]; // Convolution auto out = static_cast (0.0); for (size_t k = 0; k < Ndiv2; k += 2) out += (buf[k] + buf[N - k - 1]) * fir[k]; // Outputs bufferSamples[i << 1] = out; bufferSamples[(i << 1) + 1] = buf[Ndiv2 + 1] * fir[Ndiv2]; // Shift data for (size_t k = 0; k < N - 2; k+=2) buf[k] = buf[k + 2]; } } void processSamplesDown (SampleType *samples, size_t numSamples) override { // Initialization auto bufferSamples = OversamplingEngine::buffer.getWritePointer (0); auto fir = coefficientsDown.getRawCoefficients(); auto buf = stateDown.getWritePointer (0); auto buf2 = stateDown2.getWritePointer (0); auto N = coefficientsDown.getFilterOrder() + 1; auto Ndiv2 = N / 2; auto Ndiv4 = Ndiv2 / 2; // Processing for (size_t i = 0; i < numSamples; i++) { // Input buf[N - 1] = bufferSamples[2 * i]; // Convolution auto out = static_cast (0.0); for (size_t k = 0; k < Ndiv2; k += 2) out += (buf[k] + buf[N - k - 1]) * fir[k]; // Output out += buf2[position] * fir[Ndiv2]; buf2[position] = bufferSamples[2 * i + 1]; samples[i] = out; // Shift data for (size_t k = 0; k < N - 2; k++) buf[k] = buf[k + 2]; // Circular buffer position = (position == 0 ? Ndiv4 - 1 : position - 1); } } private: //=============================================================================== dsp::FIR::Coefficients coefficientsUp, coefficientsDown; AudioBuffer stateUp, stateDown, stateDown2; size_t position; //=============================================================================== JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (Oversampling2TimesEquirippleFIR) }; //=============================================================================== /** Oversampling engine class performing 2 times oversampling using the Filter Design IIR Polyphase Allpass Cascaded method. The resulting filter is minimum phase, and provided with a method to get the exact resulting latency. */ template class Oversampling2TimesPolyphaseIIR : public OversamplingEngine { public: //=============================================================================== Oversampling2TimesPolyphaseIIR (SampleType normalizedTransitionWidthUp, SampleType stopbandAttenuationdBUp, SampleType normalizedTransitionWidthDown, SampleType stopbandAttenuationdBDown) : OversamplingEngine (2) { auto structureUp = dsp::FilterDesign::designIIRLowpassHalfBandPolyphaseAllpassMethod (normalizedTransitionWidthUp, stopbandAttenuationdBUp); dsp::IIR::Coefficients coeffsUp = getCoefficients (structureUp); latency = static_cast (-(coeffsUp.getPhaseForFrequency (0.0001, 1.0)) / (0.0001 * 2 * double_Pi)); auto structureDown = dsp::FilterDesign::designIIRLowpassHalfBandPolyphaseAllpassMethod (normalizedTransitionWidthDown, stopbandAttenuationdBDown); dsp::IIR::Coefficients coeffsDown = getCoefficients (structureDown); latency += static_cast (-(coeffsDown.getPhaseForFrequency (0.0001, 1.0)) / (0.0001 * 2 * double_Pi)); for (auto i = 0; i < structureUp.directPath.size(); i++) coefficientsUp.add (structureUp.directPath[i].coefficients[0]); for (auto i = 1; i < structureUp.delayedPath.size(); i++) coefficientsUp.add (structureUp.delayedPath[i].coefficients[0]); for (auto i = 0; i < structureDown.directPath.size(); i++) coefficientsDown.add (structureDown.directPath[i].coefficients[0]); for (auto i = 1; i < structureDown.delayedPath.size(); i++) coefficientsDown.add (structureDown.delayedPath[i].coefficients[0]); v1Up.resize (coefficientsUp.size()); v1Down.resize (coefficientsDown.size()); } ~Oversampling2TimesPolyphaseIIR() {} //=============================================================================== SampleType getLatencyInSamples() override { return latency; } void reset() override { OversamplingEngine::reset(); v1Up.fill (0); v1Down.fill (0); delayDown = 0; } void processSamplesUp (SampleType *samples, size_t numSamples) override { // Initialization auto bufferSamples = OversamplingEngine::buffer.getWritePointer (0); auto coeffs = coefficientsUp.getRawDataPointer(); auto lv1 = v1Up.getRawDataPointer(); auto numStages = coefficientsUp.size(); auto delayedStages = numStages / 2; auto directStages = numStages - delayedStages; // Processing for (size_t i = 0; i < numSamples; i++) { // Direct path cascaded allpass filters auto input = samples[i]; for (auto n = 0; n < directStages; n++) { auto alpha = coeffs[n]; auto output = alpha * input + lv1[n]; lv1[n] = input - alpha * output; input = output; } // Output bufferSamples[i << 1] = input; // Delayed path cascaded allpass filters input = samples[i]; for (auto n = directStages; n < numStages; n++) { auto alpha = coeffs[n]; auto output = alpha * input + lv1[n]; lv1[n] = input - alpha * output; input = output; } // Output bufferSamples[(i << 1) + 1] = input; } // Snap To Zero snapToZero (true); } void processSamplesDown (SampleType *samples, size_t numSamples) override { // Initialization auto bufferSamples = OversamplingEngine::buffer.getWritePointer (0); auto coeffs = coefficientsDown.getRawDataPointer(); auto lv1 = v1Down.getRawDataPointer(); auto numStages = coefficientsDown.size(); auto delayedStages = numStages / 2; auto directStages = numStages - delayedStages; // Processing for (size_t i = 0; i < numSamples; i++) { // Direct path cascaded allpass filters auto input = bufferSamples[i << 1]; for (auto n = 0; n < directStages; n++) { auto alpha = coeffs[n]; auto output = alpha * input + lv1[n]; lv1[n] = input - alpha * output; input = output; } auto directOut = input; // Delayed path cascaded allpass filters input = bufferSamples[(i << 1) + 1]; for (auto n = directStages; n < numStages; n++) { auto alpha = coeffs[n]; auto output = alpha * input + lv1[n]; lv1[n] = input - alpha * output; input = output; } // Output samples[i] = (delayDown + directOut) * static_cast (0.5); delayDown = input; } // Snap To Zero snapToZero (false); } void snapToZero (bool snapUpProcessing) { if (snapUpProcessing) { auto lv1 = v1Up.getRawDataPointer(); auto numStages = coefficientsUp.size(); for (auto n = 0; n < numStages; n++) JUCE_SNAP_TO_ZERO (lv1[n]); } else { auto lv1 = v1Down.getRawDataPointer(); auto numStages = coefficientsDown.size(); for (auto n = 0; n < numStages; n++) JUCE_SNAP_TO_ZERO (lv1[n]); } } private: //=============================================================================== /** This function calculates the equivalent high order IIR filter of a given polyphase cascaded allpass filters structure. */ const dsp::IIR::Coefficients getCoefficients (typename dsp::FilterDesign::IIRPolyphaseAllpassStructure &structure) const { dsp::Polynomial numerator1 ({ static_cast (1.0) }); dsp::Polynomial denominator1 ({ static_cast (1.0) }); dsp::Polynomial numerator2 ({ static_cast (1.0) }); dsp::Polynomial denominator2 ({ static_cast (1.0) }); dsp::Polynomial temp; for (auto n = 0; n < structure.directPath.size(); n++) { auto *coeffs = structure.directPath.getReference (n).getRawCoefficients(); if (structure.directPath[n].getFilterOrder() == 1) { temp = dsp::Polynomial ({ coeffs[0], coeffs[1] }); numerator1 = numerator1.getProductWith (temp); temp = dsp::Polynomial ({ static_cast (1.0), coeffs[2] }); denominator1 = denominator1.getProductWith (temp); } else { temp = dsp::Polynomial ({ coeffs[0], coeffs[1], coeffs[2] }); numerator1 = numerator1.getProductWith (temp); temp = dsp::Polynomial ({ static_cast (1.0), coeffs[3], coeffs[4] }); denominator1 = denominator1.getProductWith (temp); } } for (auto n = 0; n < structure.delayedPath.size(); n++) { auto *coeffs = structure.delayedPath.getReference (n).getRawCoefficients(); if (structure.delayedPath[n].getFilterOrder() == 1) { temp = dsp::Polynomial ({ coeffs[0], coeffs[1] }); numerator2 = numerator2.getProductWith (temp); temp = dsp::Polynomial ({ static_cast (1.0), coeffs[2] }); denominator2 = denominator2.getProductWith (temp); } else { temp = dsp::Polynomial ({ coeffs[0], coeffs[1], coeffs[2] }); numerator2 = numerator2.getProductWith (temp); temp = dsp::Polynomial ({ static_cast (1.0), coeffs[3], coeffs[4] }); denominator2 = denominator2.getProductWith (temp); } } dsp::Polynomial numeratorf1 = numerator1.getProductWith (denominator2); dsp::Polynomial numeratorf2 = numerator2.getProductWith (denominator1); dsp::Polynomial numerator = numeratorf1.getSumWith (numeratorf2); dsp::Polynomial denominator = denominator1.getProductWith (denominator2); dsp::IIR::Coefficients coeffs; coeffs.coefficients.clear(); auto inversion = static_cast (1.0) / denominator[0]; for (auto i = 0; i <= numerator.getOrder(); i++) coeffs.coefficients.add (numerator[i] * inversion); for (auto i = 1; i <= denominator.getOrder(); i++) coeffs.coefficients.add (denominator[i] * inversion); return coeffs; } //=============================================================================== Array coefficientsUp, coefficientsDown; SampleType latency; Array v1Up, v1Down; SampleType delayDown; //=============================================================================== JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (Oversampling2TimesPolyphaseIIR) }; //=============================================================================== template Oversampling::Oversampling (size_t newNumChannels, size_t newFactor, FilterType newType, bool newMaxQuality) { jassert (newFactor >= 0 && newFactor <= 4 && newNumChannels > 0); factorOversampling = (size_t) 1 << newFactor; isMaximumQuality = newMaxQuality; type = newType; numChannels = newNumChannels; if (newFactor == 0) { for (size_t channel = 0; channel < numChannels; channel++) engines.add (new OversamplingDummy()); numStages = 1; } else if (type == FilterType::filterHalfBandPolyphaseIIR) { numStages = newFactor; for (size_t channel = 0; channel < numChannels; channel++) for (size_t n = 0; n < numStages; n++) { auto tw1 = (isMaximumQuality ? 0.10f : 0.12f); auto tw2 = (isMaximumQuality ? 0.12f : 0.15f); engines.add (new Oversampling2TimesPolyphaseIIR (tw1, -75.f + 10.f * n, tw2, -70.f + 10.f * n)); } } else if (type == FilterType::filterHalfBandFIREquiripple) { numStages = newFactor; for (size_t channel = 0; channel < numChannels; channel++) for (size_t n = 0; n < numStages; n++) { auto tw1 = (isMaximumQuality ? 0.10f : 0.12f); auto tw2 = (isMaximumQuality ? 0.12f : 0.15f); engines.add (new Oversampling2TimesEquirippleFIR (tw1, -90.f + 10.f * n, tw2, -70.f + 10.f * n)); } } } template Oversampling::~Oversampling() { engines.clear(); } //=============================================================================== template SampleType Oversampling::getLatencyInSamples() noexcept { auto latency = static_cast (0); size_t order = 1; for (size_t n = 0; n < numStages; n++) { auto& engine = *engines[static_cast (n)]; order *= engine.getFactor(); latency += engine.getLatencyInSamples() / std::pow (static_cast (2), static_cast (order)); } return latency; } template size_t Oversampling::getOversamplingFactor() noexcept { return factorOversampling; } //=============================================================================== template void Oversampling::initProcessing (size_t maximumNumberOfSamplesBeforeOversampling) { jassert (engines.size() > 0); for (size_t channel = 0; channel < numChannels; channel++) { auto currentNumSamples = maximumNumberOfSamplesBeforeOversampling; auto offset = numStages * channel; for (size_t n = 0; n < numStages; n++) { auto& engine = *engines[static_cast (n + offset)]; engine.initProcessing (currentNumSamples); currentNumSamples *= engine.getFactor(); } } isReady = true; reset(); } template void Oversampling::reset() noexcept { jassert (engines.size() > 0); if (isReady) for (auto n = 0; n < engines.size(); n++) engines[n]->reset(); } template typename dsp::AudioBlock Oversampling::getProcessedSamples() { jassert (engines.size() > 0); Array arrayChannels; for (size_t channel = 0; channel < numChannels; channel++) arrayChannels.add (engines[static_cast (((channel + 1) * numStages) - 1)]->getProcessedSamples()); auto numSamples = engines[static_cast (numStages - 1)]->getNumProcessedSamples(); auto block = dsp::AudioBlock (arrayChannels.getRawDataPointer(), numChannels, numSamples); return block; } template void Oversampling::processSamplesUp (dsp::AudioBlock &block) noexcept { jassert (engines.size() > 0 && block.getNumChannels() <= numChannels); if (! isReady) return; for (size_t channel = 0; channel < jmin (numChannels, block.getNumChannels()); channel++) { SampleType* dataSamples = block.getChannelPointer (channel); auto currentNumSamples = block.getNumSamples(); auto offset = numStages * channel; for (size_t n = 0; n < numStages; n++) { auto& engine = *engines[static_cast (n + offset)]; engine.processSamplesUp (dataSamples, currentNumSamples); currentNumSamples *= engine.getFactor(); dataSamples = engine.getProcessedSamples(); } } } template void Oversampling::processSamplesDown (dsp::AudioBlock &block) noexcept { jassert (engines.size() > 0 && block.getNumChannels() <= numChannels); if (! isReady) return; for (size_t channel = 0; channel < jmin (numChannels, block.getNumChannels()); channel++) { auto currentNumSamples = block.getNumSamples(); auto offset = numStages * channel; for (size_t n = 0; n < numStages - 1; n++) currentNumSamples *= engines[static_cast (n + offset)]->getFactor(); for (size_t n = numStages - 1; n > 0; n--) { auto& engine = *engines[static_cast (n + offset)]; auto dataSamples = engines[static_cast (n + offset - 1)]->getProcessedSamples(); engine.processSamplesDown (dataSamples, currentNumSamples); currentNumSamples /= engine.getFactor(); } engines[static_cast (offset)]->processSamplesDown (block.getChannelPointer (channel), currentNumSamples); } } template class Oversampling; template class Oversampling;