/* ============================================================================== This file is part of the JUCE framework. Copyright (c) Raw Material Software Limited JUCE is an open source framework subject to commercial or open source licensing. By downloading, installing, or using the JUCE framework, or combining the JUCE framework with any other source code, object code, content or any other copyrightable work, you agree to the terms of the JUCE End User Licence Agreement, and all incorporated terms including the JUCE Privacy Policy and the JUCE Website Terms of Service, as applicable, which will bind you. If you do not agree to the terms of these agreements, we will not license the JUCE framework to you, and you must discontinue the installation or download process and cease use of the JUCE framework. JUCE End User Licence Agreement: https://juce.com/legal/juce-8-licence/ JUCE Privacy Policy: https://juce.com/juce-privacy-policy JUCE Website Terms of Service: https://juce.com/juce-website-terms-of-service/ Or: You may also use this code under the terms of the AGPLv3: https://www.gnu.org/licenses/agpl-3.0.en.html THE JUCE FRAMEWORK IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER EXPRESSED OR IMPLIED, INCLUDING WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. ============================================================================== */ namespace juce { #if JUCE_UNIT_TESTS class InterpolatorTests final : public UnitTest { public: InterpolatorTests() : UnitTest ("InterpolatorTests", UnitTestCategories::audio) { } private: template void runInterplatorTests (const String& interpolatorName) { auto createGaussian = [] (std::vector& destination, float scale, float centreInSamples, float width) { for (size_t i = 0; i < destination.size(); ++i) { auto x = (((float) i) - centreInSamples) * width; destination[i] = std::exp (-(x * x)); } FloatVectorOperations::multiply (destination.data(), scale, (int) destination.size()); }; auto findGaussianPeak = [] (const std::vector& input) -> float { auto max = std::max_element (std::begin (input), std::end (input)); auto maxPrev = max - 1; jassert (maxPrev >= std::begin (input)); auto maxNext = max + 1; jassert (maxNext < std::end (input)); auto quadraticMaxLoc = (*maxPrev - *maxNext) / (2.0f * ((*maxNext + *maxPrev) - (2.0f * *max))); return quadraticMaxLoc + (float) std::distance (std::begin (input), max); }; auto expectAllElementsWithin = [this] (const std::vector& v1, const std::vector& v2, float tolerance) { expectEquals ((int) v1.size(), (int) v2.size()); for (size_t i = 0; i < v1.size(); ++i) expectWithinAbsoluteError (v1[i], v2[i], tolerance); }; InterpolatorType interpolator; constexpr size_t inputSize = 1001; static_assert (inputSize > 800 + InterpolatorType::getBaseLatency(), "The test InterpolatorTests input buffer is too small"); std::vector input (inputSize); constexpr auto inputGaussianMidpoint = (float) (inputSize - 1) / 2.0f; constexpr auto inputGaussianValueAtEnds = 0.000001f; const auto inputGaussianWidth = std::sqrt (-std::log (inputGaussianValueAtEnds)) / inputGaussianMidpoint; createGaussian (input, 1.0f, inputGaussianMidpoint, inputGaussianWidth); for (auto speedRatio : { 0.4, 0.8263, 1.0, 1.05, 1.2384, 1.6 }) { const auto expectedGaussianMidpoint = (inputGaussianMidpoint + InterpolatorType::getBaseLatency()) / (float) speedRatio; const auto expectedGaussianWidth = inputGaussianWidth * (float) speedRatio; const auto outputBufferSize = (size_t) std::floor ((float) input.size() / speedRatio); for (int numBlocks : { 1, 5 }) { const auto inputBlockSize = (float) input.size() / (float) numBlocks; const auto outputBlockSize = (int) std::floor (inputBlockSize / speedRatio); std::vector output (outputBufferSize, std::numeric_limits::min()); beginTest (interpolatorName + " process " + String (numBlocks) + " blocks ratio " + String (speedRatio)); interpolator.reset(); { auto* inputPtr = input.data(); auto* outputPtr = output.data(); for (int i = 0; i < numBlocks; ++i) { auto numInputSamplesRead = interpolator.process (speedRatio, inputPtr, outputPtr, outputBlockSize); inputPtr += numInputSamplesRead; outputPtr += outputBlockSize; } } expectWithinAbsoluteError (findGaussianPeak (output), expectedGaussianMidpoint, 0.1f); std::vector expectedOutput (output.size()); createGaussian (expectedOutput, 1.0f, expectedGaussianMidpoint, expectedGaussianWidth); expectAllElementsWithin (output, expectedOutput, 0.02f); beginTest (interpolatorName + " process adding " + String (numBlocks) + " blocks ratio " + String (speedRatio)); interpolator.reset(); constexpr float addingGain = 0.7384f; { auto* inputPtr = input.data(); auto* outputPtr = output.data(); for (int i = 0; i < numBlocks; ++i) { auto numInputSamplesRead = interpolator.processAdding (speedRatio, inputPtr, outputPtr, outputBlockSize, addingGain); inputPtr += numInputSamplesRead; outputPtr += outputBlockSize; } } expectWithinAbsoluteError (findGaussianPeak (output), expectedGaussianMidpoint, 0.1f); std::vector additionalOutput (output.size()); createGaussian (additionalOutput, addingGain, expectedGaussianMidpoint, expectedGaussianWidth); FloatVectorOperations::add (expectedOutput.data(), additionalOutput.data(), (int) additionalOutput.size()); expectAllElementsWithin (output, expectedOutput, 0.02f); } beginTest (interpolatorName + " process wrap 0 ratio " + String (speedRatio)); std::vector doubleLengthOutput (2 * outputBufferSize, std::numeric_limits::min()); interpolator.reset(); interpolator.process (speedRatio, input.data(), doubleLengthOutput.data(), (int) doubleLengthOutput.size(), (int) input.size(), 0); std::vector expectedDoubleLengthOutput (doubleLengthOutput.size()); createGaussian (expectedDoubleLengthOutput, 1.0f, expectedGaussianMidpoint, expectedGaussianWidth); expectAllElementsWithin (doubleLengthOutput, expectedDoubleLengthOutput, 0.02f); beginTest (interpolatorName + " process wrap double ratio " + String (speedRatio)); interpolator.reset(); interpolator.process (speedRatio, input.data(), doubleLengthOutput.data(), (int) doubleLengthOutput.size(), (int) input.size(), (int) input.size()); std::vector secondGaussian (doubleLengthOutput.size()); createGaussian (secondGaussian, 1.0f, expectedGaussianMidpoint + (float) outputBufferSize, expectedGaussianWidth); FloatVectorOperations::add (expectedDoubleLengthOutput.data(), secondGaussian.data(), (int) expectedDoubleLengthOutput.size()); expectAllElementsWithin (doubleLengthOutput, expectedDoubleLengthOutput, 0.02f); } } public: void runTest() override { runInterplatorTests ("WindowedSincInterpolator"); runInterplatorTests ("LagrangeInterpolator"); runInterplatorTests ("CatmullRomInterpolator"); runInterplatorTests ("LinearInterpolator"); } }; static InterpolatorTests interpolatorTests; #endif } // namespace juce