mirror of
https://github.com/juce-framework/JUCE.git
synced 2026-01-10 23:44:24 +00:00
First check-in of the "jucequake": a major re-organisation of the library to break it up into modules. For more details about this, see the website forum..
This commit is contained in:
parent
1a21c89755
commit
b70e0a28d2
1527 changed files with 90380 additions and 396643 deletions
244
modules/juce_cryptography/encryption/juce_Primes.cpp
Normal file
244
modules/juce_cryptography/encryption/juce_Primes.cpp
Normal file
|
|
@ -0,0 +1,244 @@
|
|||
/*
|
||||
==============================================================================
|
||||
|
||||
This file is part of the JUCE library - "Jules' Utility Class Extensions"
|
||||
Copyright 2004-11 by Raw Material Software Ltd.
|
||||
|
||||
------------------------------------------------------------------------------
|
||||
|
||||
JUCE can be redistributed and/or modified under the terms of the GNU General
|
||||
Public License (Version 2), as published by the Free Software Foundation.
|
||||
A copy of the license is included in the JUCE distribution, or can be found
|
||||
online at www.gnu.org/licenses.
|
||||
|
||||
JUCE is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
|
||||
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
||||
|
||||
------------------------------------------------------------------------------
|
||||
|
||||
To release a closed-source product which uses JUCE, commercial licenses are
|
||||
available: visit www.rawmaterialsoftware.com/juce for more information.
|
||||
|
||||
==============================================================================
|
||||
*/
|
||||
|
||||
BEGIN_JUCE_NAMESPACE
|
||||
|
||||
//==============================================================================
|
||||
namespace PrimesHelpers
|
||||
{
|
||||
void createSmallSieve (const int numBits, BigInteger& result)
|
||||
{
|
||||
result.setBit (numBits);
|
||||
result.clearBit (numBits); // to enlarge the array
|
||||
|
||||
result.setBit (0);
|
||||
int n = 2;
|
||||
|
||||
do
|
||||
{
|
||||
for (int i = n + n; i < numBits; i += n)
|
||||
result.setBit (i);
|
||||
|
||||
n = result.findNextClearBit (n + 1);
|
||||
}
|
||||
while (n <= (numBits >> 1));
|
||||
}
|
||||
|
||||
void bigSieve (const BigInteger& base, const int numBits, BigInteger& result,
|
||||
const BigInteger& smallSieve, const int smallSieveSize)
|
||||
{
|
||||
jassert (! base[0]); // must be even!
|
||||
|
||||
result.setBit (numBits);
|
||||
result.clearBit (numBits); // to enlarge the array
|
||||
|
||||
int index = smallSieve.findNextClearBit (0);
|
||||
|
||||
do
|
||||
{
|
||||
const int prime = (index << 1) + 1;
|
||||
|
||||
BigInteger r (base), remainder;
|
||||
r.divideBy (prime, remainder);
|
||||
|
||||
int i = prime - remainder.getBitRangeAsInt (0, 32);
|
||||
|
||||
if (r.isZero())
|
||||
i += prime;
|
||||
|
||||
if ((i & 1) == 0)
|
||||
i += prime;
|
||||
|
||||
i = (i - 1) >> 1;
|
||||
|
||||
while (i < numBits)
|
||||
{
|
||||
result.setBit (i);
|
||||
i += prime;
|
||||
}
|
||||
|
||||
index = smallSieve.findNextClearBit (index + 1);
|
||||
}
|
||||
while (index < smallSieveSize);
|
||||
}
|
||||
|
||||
bool findCandidate (const BigInteger& base, const BigInteger& sieve,
|
||||
const int numBits, BigInteger& result, const int certainty)
|
||||
{
|
||||
for (int i = 0; i < numBits; ++i)
|
||||
{
|
||||
if (! sieve[i])
|
||||
{
|
||||
result = base + (unsigned int) ((i << 1) + 1);
|
||||
|
||||
if (Primes::isProbablyPrime (result, certainty))
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool passesMillerRabin (const BigInteger& n, int iterations)
|
||||
{
|
||||
const BigInteger one (1), two (2);
|
||||
const BigInteger nMinusOne (n - one);
|
||||
|
||||
BigInteger d (nMinusOne);
|
||||
const int s = d.findNextSetBit (0);
|
||||
d >>= s;
|
||||
|
||||
BigInteger smallPrimes;
|
||||
int numBitsInSmallPrimes = 0;
|
||||
|
||||
for (;;)
|
||||
{
|
||||
numBitsInSmallPrimes += 256;
|
||||
createSmallSieve (numBitsInSmallPrimes, smallPrimes);
|
||||
|
||||
const int numPrimesFound = numBitsInSmallPrimes - smallPrimes.countNumberOfSetBits();
|
||||
|
||||
if (numPrimesFound > iterations + 1)
|
||||
break;
|
||||
}
|
||||
|
||||
int smallPrime = 2;
|
||||
|
||||
while (--iterations >= 0)
|
||||
{
|
||||
smallPrime = smallPrimes.findNextClearBit (smallPrime + 1);
|
||||
|
||||
BigInteger r (smallPrime);
|
||||
r.exponentModulo (d, n);
|
||||
|
||||
if (r != one && r != nMinusOne)
|
||||
{
|
||||
for (int j = 0; j < s; ++j)
|
||||
{
|
||||
r.exponentModulo (two, n);
|
||||
|
||||
if (r == nMinusOne)
|
||||
break;
|
||||
}
|
||||
|
||||
if (r != nMinusOne)
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
//==============================================================================
|
||||
BigInteger Primes::createProbablePrime (const int bitLength,
|
||||
const int certainty,
|
||||
const int* randomSeeds,
|
||||
int numRandomSeeds)
|
||||
{
|
||||
using namespace PrimesHelpers;
|
||||
int defaultSeeds [16];
|
||||
|
||||
if (numRandomSeeds <= 0)
|
||||
{
|
||||
randomSeeds = defaultSeeds;
|
||||
numRandomSeeds = numElementsInArray (defaultSeeds);
|
||||
Random r1, r2;
|
||||
|
||||
for (int j = 10; --j >= 0;)
|
||||
{
|
||||
r1.setSeedRandomly();
|
||||
|
||||
for (int i = numRandomSeeds; --i >= 0;)
|
||||
defaultSeeds[i] ^= r1.nextInt() ^ r2.nextInt();
|
||||
}
|
||||
}
|
||||
|
||||
BigInteger smallSieve;
|
||||
const int smallSieveSize = 15000;
|
||||
createSmallSieve (smallSieveSize, smallSieve);
|
||||
|
||||
BigInteger p;
|
||||
|
||||
for (int i = numRandomSeeds; --i >= 0;)
|
||||
{
|
||||
BigInteger p2;
|
||||
|
||||
Random r (randomSeeds[i]);
|
||||
r.fillBitsRandomly (p2, 0, bitLength);
|
||||
|
||||
p ^= p2;
|
||||
}
|
||||
|
||||
p.setBit (bitLength - 1);
|
||||
p.clearBit (0);
|
||||
|
||||
const int searchLen = jmax (1024, (bitLength / 20) * 64);
|
||||
|
||||
while (p.getHighestBit() < bitLength)
|
||||
{
|
||||
p += 2 * searchLen;
|
||||
|
||||
BigInteger sieve;
|
||||
bigSieve (p, searchLen, sieve,
|
||||
smallSieve, smallSieveSize);
|
||||
|
||||
BigInteger candidate;
|
||||
|
||||
if (findCandidate (p, sieve, searchLen, candidate, certainty))
|
||||
return candidate;
|
||||
}
|
||||
|
||||
jassertfalse;
|
||||
return BigInteger();
|
||||
}
|
||||
|
||||
bool Primes::isProbablyPrime (const BigInteger& number, const int certainty)
|
||||
{
|
||||
using namespace PrimesHelpers;
|
||||
|
||||
if (! number[0])
|
||||
return false;
|
||||
|
||||
if (number.getHighestBit() <= 10)
|
||||
{
|
||||
const int num = number.getBitRangeAsInt (0, 10);
|
||||
|
||||
for (int i = num / 2; --i > 1;)
|
||||
if (num % i == 0)
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (number.findGreatestCommonDivisor (2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23) != 1)
|
||||
return false;
|
||||
|
||||
return passesMillerRabin (number, certainty);
|
||||
}
|
||||
}
|
||||
|
||||
END_JUCE_NAMESPACE
|
||||
Loading…
Add table
Add a link
Reference in a new issue