1
0
Fork 0
mirror of https://github.com/juce-framework/JUCE.git synced 2026-01-10 23:44:24 +00:00

Added the JUCE DSP module

This commit is contained in:
hogliux 2017-07-27 12:39:07 +01:00
parent 281c2fe2af
commit 244a944857
212 changed files with 37051 additions and 1301 deletions

View file

@ -0,0 +1,669 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2017 - ROLI Ltd.
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 5 End-User License
Agreement and JUCE 5 Privacy Policy (both updated and effective as of the
27th April 2017).
End User License Agreement: www.juce.com/juce-5-licence
Privacy Policy: www.juce.com/juce-5-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace SIMDRegister_test_internal
{
template <typename type>
static void fillRandom (type* dst, const int size, Random& random)
{
bool is_signed = std::is_signed<type>::value;
for (int i = 0; i < size; ++i)
{
if (is_signed)
{
*dst++ = static_cast<type> ((random.nextFloat() * 16.0) - 8.0);
}
else
{
*dst++ = static_cast<type> (random.nextFloat() * 8.0);
}
}
}
template <typename type>
static void fillRandom (std::complex<type>* dst, const int size, Random& random)
{
for (int i = 0; i < size; ++i)
{
type real, imag;
real = static_cast<type> ((random.nextFloat() * 16.0) - 8.0);
imag = static_cast<type> ((random.nextFloat() * 16.0) - 8.0);
*dst++ = std::complex<type> (real, imag);
}
}
// Avoid visual studio warning
template <typename type>
static type safeAbs (type a)
{
return static_cast<type> (fabs ((double) a));
}
template <typename type>
static type safeAbs (std::complex<type> a)
{
return abs (a);
}
template <typename type>
static double difference (type a)
{
return static_cast<double> (safeAbs (a));
}
template <typename type>
static double difference (type a, type b)
{
return difference (a - b);
}
}
// These tests need to be strictly run on all platforms supported by JUCE as the
// SIMD code is highly platform dependant.
class SIMDRegisterUnitTests : public UnitTest
{
public:
SIMDRegisterUnitTests() : UnitTest ("SIMDRegister UnitTests") {}
//==============================================================================
// Some helper classes
template <typename type>
static bool allValuesEqualTo (const SIMDRegister<type>& vec, const type scalar)
{
// as we do not want to rely on the access operator we cast this to a primitive pointer
const type* ptr = reinterpret_cast<const type*> (&vec);
for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
if (ptr[i] != scalar) return false;
return true;
}
template <typename type>
static bool vecEqualToArray (const SIMDRegister<type>& vec, const type* array)
{
const type* ptr = reinterpret_cast<const type*> (&vec);
for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
{
double delta = SIMDRegister_test_internal::difference (ptr[i], array[i]);
if (delta > 1e-4)
{
DBG ("a: " << SIMDRegister_test_internal::difference (ptr[i]) << " b: " << SIMDRegister_test_internal::difference (array[i]) << " difference: " << delta);
return false;
}
}
return true;
}
template <typename type>
static void copy (SIMDRegister<type>& vec, const type* ptr)
{
for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
vec[i] = ptr[i];
}
//==============================================================================
// Someuseful operations to test
struct Addition
{
template <typename typeOne, typename typeTwo>
static void inplace (typeOne& a, const typeTwo& b)
{
a += b;
}
template <typename typeOne, typename typeTwo>
static typeOne outofplace (const typeOne& a, const typeTwo& b)
{
return a + b;
}
};
struct Subtraction
{
template <typename typeOne, typename typeTwo>
static void inplace (typeOne& a, const typeTwo& b)
{
a -= b;
}
template <typename typeOne, typename typeTwo>
static typeOne outofplace (const typeOne& a, const typeTwo& b)
{
return a - b;
}
};
struct Multiplication
{
template <typename typeOne, typename typeTwo>
static void inplace (typeOne& a, const typeTwo& b)
{
a *= b;
}
template <typename typeOne, typename typeTwo>
static typeOne outofplace (const typeOne& a, const typeTwo& b)
{
return a * b;
}
};
struct BitAND
{
template <typename typeOne, typename typeTwo>
static void inplace (typeOne& a, const typeTwo& b)
{
a &= b;
}
template <typename typeOne, typename typeTwo>
static typeOne outofplace (const typeOne& a, const typeTwo& b)
{
return a & b;
}
};
struct BitOR
{
template <typename typeOne, typename typeTwo>
static void inplace (typeOne& a, const typeTwo& b)
{
a |= b;
}
template <typename typeOne, typename typeTwo>
static typeOne outofplace (const typeOne& a, const typeTwo& b)
{
return a | b;
}
};
struct BitXOR
{
template <typename typeOne, typename typeTwo>
static void inplace (typeOne& a, const typeTwo& b)
{
a ^= b;
}
template <typename typeOne, typename typeTwo>
static typeOne outofplace (const typeOne& a, const typeTwo& b)
{
return a ^ b;
}
};
//==============================================================================
// the individual tests
struct InitializationTest
{
template <typename type>
static void run (UnitTest& u, Random& random)
{
u.expect (allValuesEqualTo<type> (SIMDRegister<type>::expand (static_cast<type> (23)), 23));
{
SIMDRegister<type> a;
type* ptr = reinterpret_cast<type*>(&a);
SIMDRegister_test_internal::fillRandom (ptr, SIMDRegister<type>::SIMDNumElements, random);
u.expect (vecEqualToArray (SIMDRegister<type> (a), ptr));
}
}
};
struct AccessTest
{
template <typename type>
static void run (UnitTest& u, Random& random)
{
// set-up
SIMDRegister<type> a;
type array [SIMDRegister<type>::SIMDNumElements];
SIMDRegister_test_internal::fillRandom (array, SIMDRegister<type>::SIMDNumElements, random);
// Test non-const access operator
for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
a[i] = array[i];
u.expect (vecEqualToArray (a, array));
// Test const access operator
const SIMDRegister<type>& b = a;
for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
u.expect (b[i] == array[i]);
}
};
template <class Operation>
struct OperatorTests
{
template <typename type>
static void run (UnitTest& u, Random& random)
{
for (int n = 0; n < 100; ++n)
{
// set-up
SIMDRegister<type> a, b, c;
type array_a [SIMDRegister<type>::SIMDNumElements];
type array_b [SIMDRegister<type>::SIMDNumElements];
type array_c [SIMDRegister<type>::SIMDNumElements];
SIMDRegister_test_internal::fillRandom (array_a, SIMDRegister<type>::SIMDNumElements, random);
SIMDRegister_test_internal::fillRandom (array_b, SIMDRegister<type>::SIMDNumElements, random);
SIMDRegister_test_internal::fillRandom (array_c, SIMDRegister<type>::SIMDNumElements, random);
copy (a, array_a); copy (b, array_b); copy (c, array_c);
// test in-place with both params being vectors
for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
Operation::template inplace<type, type> (array_a[i], array_b[i]);
Operation::template inplace<SIMDRegister<type>, SIMDRegister<type> > (a, b);
u.expect (vecEqualToArray (a, array_a));
u.expect (vecEqualToArray (b, array_b));
SIMDRegister_test_internal::fillRandom (array_a, SIMDRegister<type>::SIMDNumElements, random);
SIMDRegister_test_internal::fillRandom (array_b, SIMDRegister<type>::SIMDNumElements, random);
SIMDRegister_test_internal::fillRandom (array_c, SIMDRegister<type>::SIMDNumElements, random);
copy (a, array_a); copy (b, array_b); copy (c, array_c);
// test in-place with one param being scalar
for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
Operation::template inplace<type, type> (array_b[i], static_cast<type> (2));
Operation::template inplace<SIMDRegister<type>, type> (b, 2);
u.expect (vecEqualToArray (a, array_a));
u.expect (vecEqualToArray (b, array_b));
// set-up again
SIMDRegister_test_internal::fillRandom (array_a, SIMDRegister<type>::SIMDNumElements, random);
SIMDRegister_test_internal::fillRandom (array_b, SIMDRegister<type>::SIMDNumElements, random);
SIMDRegister_test_internal::fillRandom (array_c, SIMDRegister<type>::SIMDNumElements, random);
copy (a, array_a); copy (b, array_b); copy (c, array_c);
// test out-of-place with both params being vectors
for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
array_c[i] = Operation::template outofplace<type, type> (array_a[i], array_b[i]);
c = Operation::template outofplace<SIMDRegister<type>, SIMDRegister<type> > (a, b);
u.expect (vecEqualToArray (a, array_a));
u.expect (vecEqualToArray (b, array_b));
u.expect (vecEqualToArray (c, array_c));
// test out-of-place with one param being scalar
for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
array_c[i] = Operation::template outofplace<type, type> (array_b[i], static_cast<type> (2));
c = Operation::template outofplace<SIMDRegister<type>, type> (b, 2);
u.expect (vecEqualToArray (a, array_a));
u.expect (vecEqualToArray (b, array_b));
u.expect (vecEqualToArray (c, array_c));
}
}
};
template <class Operation>
struct BitOperatorTests
{
template <typename type>
static void run (UnitTest& u, Random& random)
{
typedef typename SIMDRegister<type>::vMaskType vMaskType;
typedef typename SIMDRegister<type>::MaskType MaskType;
for (int n = 0; n < 100; ++n)
{
// Check flip sign bit and using as a union
{
type array_a [SIMDRegister<type>::SIMDNumElements];
union
{
SIMDRegister<type> floatVersion;
vMaskType intVersion;
} a, b;
vMaskType bitmask = vMaskType::expand (static_cast<MaskType> (1) << (sizeof (MaskType) - 1));
SIMDRegister_test_internal::fillRandom (array_a, SIMDRegister<type>::SIMDNumElements, random);
copy (a.floatVersion, array_a);
copy (b.floatVersion, array_a);
Operation::template inplace<SIMDRegister<type>, vMaskType> (a.floatVersion, bitmask);
Operation::template inplace<vMaskType, vMaskType> (b.intVersion, bitmask);
u.expect (vecEqualToArray (a.floatVersion, reinterpret_cast<const type*> (&b.floatVersion)));
}
// set-up
SIMDRegister<type> a, c;
vMaskType b;
MaskType array_a [SIMDRegister<MaskType>::SIMDNumElements];
MaskType array_b [SIMDRegister<MaskType>::SIMDNumElements];
MaskType array_c [SIMDRegister<MaskType>::SIMDNumElements];
type* conv_a = reinterpret_cast<type*> (array_a);
type* conv_c = reinterpret_cast<type*> (array_c);
SIMDRegister_test_internal::fillRandom (conv_a, SIMDRegister<type>::SIMDNumElements, random);
SIMDRegister_test_internal::fillRandom (array_b, SIMDRegister<MaskType>::SIMDNumElements, random);
SIMDRegister_test_internal::fillRandom (conv_c, SIMDRegister<type>::SIMDNumElements, random);
copy (a, conv_a); copy (b, array_b); copy (c, conv_c);
// test in-place with both params being vectors
for (size_t i = 0; i < SIMDRegister<MaskType>::SIMDNumElements; ++i)
Operation::template inplace<MaskType, MaskType> (array_a[i], array_b[i]);
Operation::template inplace<SIMDRegister<type>, vMaskType> (a, b);
u.expect (vecEqualToArray (a, conv_a));
u.expect (vecEqualToArray (b, array_b));
SIMDRegister_test_internal::fillRandom (conv_a, SIMDRegister<type>::SIMDNumElements, random);
SIMDRegister_test_internal::fillRandom (array_b, SIMDRegister<MaskType>::SIMDNumElements, random);
SIMDRegister_test_internal::fillRandom (conv_c, SIMDRegister<type>::SIMDNumElements, random);
copy (a, conv_a); copy (b, array_b); copy (c, conv_c);
// test in-place with one param being scalar
for (size_t i = 0; i < SIMDRegister<MaskType>::SIMDNumElements; ++i)
Operation::template inplace<MaskType, MaskType> (array_a[i], static_cast<MaskType> (9));
Operation::template inplace<SIMDRegister<type>, MaskType> (a, static_cast<MaskType> (9));
u.expect (vecEqualToArray (a, conv_a));
u.expect (vecEqualToArray (b, array_b));
// set-up again
SIMDRegister_test_internal::fillRandom (conv_a, SIMDRegister<type>::SIMDNumElements, random);
SIMDRegister_test_internal::fillRandom (array_b, SIMDRegister<MaskType>::SIMDNumElements, random);
SIMDRegister_test_internal::fillRandom (conv_c, SIMDRegister<type>::SIMDNumElements, random);
copy (a, conv_a); copy (b, array_b); copy (c, conv_c);
// test out-of-place with both params being vectors
for (size_t i = 0; i < SIMDRegister<MaskType>::SIMDNumElements; ++i)
{
array_c[i] =
Operation::template outofplace<MaskType, MaskType> (array_a[i], array_b[i]);
}
c = Operation::template outofplace<SIMDRegister<type>, vMaskType> (a, b);
u.expect (vecEqualToArray (a, conv_a));
u.expect (vecEqualToArray (b, array_b));
u.expect (vecEqualToArray (c, conv_c));
// test out-of-place with one param being scalar
for (size_t i = 0; i < SIMDRegister<MaskType>::SIMDNumElements; ++i)
array_c[i] = Operation::template outofplace<MaskType, MaskType> (array_a[i], static_cast<MaskType> (9));
c = Operation::template outofplace<SIMDRegister<type>, MaskType> (a, static_cast<MaskType> (9));
u.expect (vecEqualToArray (a, conv_a));
u.expect (vecEqualToArray (b, array_b));
u.expect (vecEqualToArray (c, conv_c));
}
}
};
struct CheckComparisonOps
{
template <typename type>
static void run (UnitTest& u, Random& random)
{
typedef typename SIMDRegister<type>::vMaskType vMaskType;
typedef typename SIMDRegister<type>::MaskType MaskType;
for (int i = 0; i < 100; ++i)
{
// set-up
type array_a [SIMDRegister<type>::SIMDNumElements];
type array_b [SIMDRegister<type>::SIMDNumElements];
MaskType array_eq [SIMDRegister<type>::SIMDNumElements];
MaskType array_neq [SIMDRegister<type>::SIMDNumElements];
MaskType array_lt [SIMDRegister<type>::SIMDNumElements];
MaskType array_le [SIMDRegister<type>::SIMDNumElements];
MaskType array_gt [SIMDRegister<type>::SIMDNumElements];
MaskType array_ge [SIMDRegister<type>::SIMDNumElements];
SIMDRegister_test_internal::fillRandom (array_a, SIMDRegister<type>::SIMDNumElements, random);
SIMDRegister_test_internal::fillRandom (array_b, SIMDRegister<type>::SIMDNumElements, random);
// do check
for (size_t j = 0; j < SIMDRegister<type>::SIMDNumElements; ++j)
{
array_eq [j] = (array_a[j] == array_b[j]) ? static_cast<MaskType> (-1) : 0;
array_neq [j] = (array_a[j] != array_b[j]) ? static_cast<MaskType> (-1) : 0;
array_lt [j] = (array_a[j] < array_b[j]) ? static_cast<MaskType> (-1) : 0;
array_le [j] = (array_a[j] <= array_b[j]) ? static_cast<MaskType> (-1) : 0;
array_gt [j] = (array_a[j] > array_b[j]) ? static_cast<MaskType> (-1) : 0;
array_ge [j] = (array_a[j] >= array_b[j]) ? static_cast<MaskType> (-1) : 0;
}
SIMDRegister<type> a, b;
vMaskType eq, neq, lt, le, gt, ge;
copy (a, array_a);
copy (b, array_b);
eq = SIMDRegister<type>::equal (a, b);
neq = SIMDRegister<type>::notEqual (a, b);
lt = SIMDRegister<type>::lessThan (a, b);
le = SIMDRegister<type>::lessThanOrEqual (a, b);
gt = SIMDRegister<type>::greaterThan (a, b);
ge = SIMDRegister<type>::greaterThanOrEqual (a, b);
u.expect (vecEqualToArray (eq, array_eq ));
u.expect (vecEqualToArray (neq, array_neq));
u.expect (vecEqualToArray (lt, array_lt ));
u.expect (vecEqualToArray (le, array_le ));
u.expect (vecEqualToArray (gt, array_gt ));
u.expect (vecEqualToArray (ge, array_ge ));
}
}
};
struct CheckMultiplyAdd
{
template <typename type>
static void run (UnitTest& u, Random& random)
{
// set-up
type array_a [SIMDRegister<type>::SIMDNumElements];
type array_b [SIMDRegister<type>::SIMDNumElements];
type array_c [SIMDRegister<type>::SIMDNumElements];
type array_d [SIMDRegister<type>::SIMDNumElements];
SIMDRegister_test_internal::fillRandom (array_a, SIMDRegister<type>::SIMDNumElements, random);
SIMDRegister_test_internal::fillRandom (array_b, SIMDRegister<type>::SIMDNumElements, random);
SIMDRegister_test_internal::fillRandom (array_c, SIMDRegister<type>::SIMDNumElements, random);
SIMDRegister_test_internal::fillRandom (array_d, SIMDRegister<type>::SIMDNumElements, random);
// check
for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
array_d[i] = array_a[i] + (array_b[i] * array_c[i]);
SIMDRegister<type> a, b, c, d;
copy (a, array_a);
copy (b, array_b);
copy (c, array_c);
d = SIMDRegister<type>::multiplyAdd (a, b, c);
u.expect (vecEqualToArray (d, array_d));
}
};
struct CheckMinMax
{
template <typename type>
static void run (UnitTest& u, Random& random)
{
for (int i = 0; i < 100; ++i)
{
type array_a [SIMDRegister<type>::SIMDNumElements];
type array_b [SIMDRegister<type>::SIMDNumElements];
type array_min [SIMDRegister<type>::SIMDNumElements];
type array_max [SIMDRegister<type>::SIMDNumElements];
for (size_t j = 0; j < SIMDRegister<type>::SIMDNumElements; ++j)
{
array_a[j] = static_cast<type> (random.nextInt (127));
array_b[j] = static_cast<type> (random.nextInt (127));
}
for (size_t j = 0; j < SIMDRegister<type>::SIMDNumElements; ++j)
{
array_min[j] = (array_a[j] < array_b[j]) ? array_a[j] : array_b[j];
array_max[j] = (array_a[j] > array_b[j]) ? array_a[j] : array_b[j];
}
SIMDRegister<type> a, b, vMin, vMax;
copy (a, array_a);
copy (b, array_b);
vMin = jmin (a, b);
vMax = jmax (a, b);
u.expect (vecEqualToArray (vMin, array_min));
u.expect (vecEqualToArray (vMax, array_max));
copy (vMin, array_a);
copy (vMax, array_a);
vMin = SIMDRegister<type>::min (a, b);
vMax = SIMDRegister<type>::max (a, b);
u.expect (vecEqualToArray (vMin, array_min));
u.expect (vecEqualToArray (vMax, array_max));
}
}
};
struct CheckSum
{
template <typename type>
static void run (UnitTest& u, Random& random)
{
type array [SIMDRegister<type>::SIMDNumElements];
type sumCheck = 0;
SIMDRegister_test_internal::fillRandom (array, SIMDRegister<type>::SIMDNumElements, random);
for (size_t j = 0; j < SIMDRegister<type>::SIMDNumElements; ++j)
{
sumCheck += array[j];
}
SIMDRegister<type> a;
copy (a, array);
u.expect (SIMDRegister_test_internal::difference (sumCheck, a.sum()) < 1e-4);
}
};
//==============================================================================
template <class TheTest>
void runTestForAllTypes (const char* unitTestName)
{
beginTest (unitTestName);
Random random = getRandom();
TheTest::template run<float> (*this, random);
TheTest::template run<double> (*this, random);
TheTest::template run<int8_t> (*this, random);
TheTest::template run<uint8_t> (*this, random);
TheTest::template run<int16_t> (*this, random);
TheTest::template run<uint16_t>(*this, random);
TheTest::template run<int32_t> (*this, random);
TheTest::template run<uint32_t>(*this, random);
TheTest::template run<int64_t> (*this, random);
TheTest::template run<uint64_t>(*this, random);
TheTest::template run<std::complex<float> > (*this, random);
TheTest::template run<std::complex<double>> (*this, random);
}
template <class TheTest>
void runTestNonComplex (const char* unitTestName)
{
beginTest (unitTestName);
Random random = getRandom();
TheTest::template run<float> (*this, random);
TheTest::template run<double> (*this, random);
TheTest::template run<int8_t> (*this, random);
TheTest::template run<uint8_t> (*this, random);
TheTest::template run<int16_t> (*this, random);
TheTest::template run<uint16_t>(*this, random);
TheTest::template run<int32_t> (*this, random);
TheTest::template run<uint32_t>(*this, random);
TheTest::template run<int64_t> (*this, random);
TheTest::template run<uint64_t>(*this, random);
}
void runTest()
{
runTestForAllTypes<InitializationTest> ("InitializationTest");
runTestForAllTypes<AccessTest> ("AccessTest");
runTestForAllTypes<OperatorTests<Addition> > ("AdditionOperators");
runTestForAllTypes<OperatorTests<Subtraction> > ("SubtractionOperators");
runTestForAllTypes<OperatorTests<Multiplication> > ("MultiplicationOperators");
runTestForAllTypes<BitOperatorTests<BitAND> > ("BitANDOperators");
runTestForAllTypes<BitOperatorTests<BitOR> > ("BitOROperators");
runTestForAllTypes<BitOperatorTests<BitXOR> > ("BitXOROperators");
runTestNonComplex<CheckComparisonOps> ("CheckComparisons");
runTestNonComplex<CheckMinMax> ("CheckMinMax");
runTestForAllTypes<CheckMultiplyAdd> ("CheckMultiplyAdd");
runTestForAllTypes<CheckSum> ("CheckSum");
}
};
static SIMDRegisterUnitTests SIMDRegisterUnitTests;